Postnatal ontogeny of kinetics of porcine jejunal brush border membrane-bound alkaline phosphatase, aminopeptidase N and sucrase activities.

Comp Biochem Physiol A Mol Integr Physiol

Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1.

Published: July 2002

Our objectives were to determine postnatal changes in the maximal enzyme activity (V(max)) and enzyme affinity (K(m)) of jejunal mucosal membrane-bound alkaline phosphatase, aminopeptidase N and sucrase using a porcine model which may more closely resemble the human intestine. Jejunal brush border membrane was prepared by Mg(2+)-precipitation and differential centrifugation from pigs of suckling (8 days), weaning (28 days), post-weaning (35 days) and adult (70 days) stages. p-Nitrophenyl phosphate (0-8 mM), L-alanine-p-nitroanilide hydrochloride (0-28 mM) and sucrose (0-100 mM) were used in alkaline phosphatase, aminopeptidase N and sucrase kinetic measurements. V(max) of alkaline phosphatase was the lowest in the adult (4.27 micromol.mg(-1) protein.min(-1)), intermediate in the suckling (9.75 micromol.mg(-l) protein.min(-l)) and the highest in the weaning and post-weaning stage (12.83 and 10.40 micromol.mg(-l) protein.min(-l)). K(m) of alkaline phosphatase was high in the suckling and weaning stages (5.14 and 9.93 mM) and low in the adult (0.66 mM). V(max) of aminopeptidase N was low in the suckling (7.04 micromol.mg protein(-1).min(-1)) and high in the post-weaning stage (13.36 micromol.mg(-l) protein.min(-l)). K(m) of aminopeptidase N was the highest in the two weaning stages (2.96 and 3.39 mM), intermediate in the adult (2.33 mM) and the lowest in the suckling stage (1.66 mM). V(max) of sucrase increased from the suckling to the adult (0.48-1.30 micromol.mg(-l) protein.min(-l)). K(m) of sucrase ranged from 11.19 to 16.57 mM. There are dramatic postnatal developmental changes in both the maximal enzyme activity and enzyme affinity of jejunal brush border membrane-bound alkaline phosphatase, aminopeptidase N and sucrase in the pig.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1095-6433(02)00102-2DOI Listing

Publication Analysis

Top Keywords

alkaline phosphatase
24
phosphatase aminopeptidase
16
aminopeptidase sucrase
16
micromolmg-l proteinmin-l
16
jejunal brush
12
brush border
12
membrane-bound alkaline
12
border membrane-bound
8
changes maximal
8
maximal enzyme
8

Similar Publications

Evaluation of Serum Lipids, Biochemical Parameters, Selected Antioxidant Elements and Oxidative Stress Profiles in Late Pregnant Jennies with Hyperlipemia.

Vet Sci

December 2024

Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.

Donkeys are particularly at risk of hyperlipemia. Hyperlipemia is a metabolic disease caused by the mobilization of fatty acids from adipose tissue, which often impacts pregnant and lactating jennies (female donkeys) during periods of negative energy balance. This study aimed to evaluate the levels of lipids, biochemical parameters, selected antioxidant elements and oxidative stress parameters in late pregnant jennies affected by hyperlipemia.

View Article and Find Full Text PDF

A Multi-Enzyme Complex That Mitigates Hepatotoxicity, Improves Egg Production and Quality, and Enhances Gut and Liver Health in Laying Hens Exposed to Trace Aflatoxin B.

Toxins (Basel)

November 2024

Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.

Aflatoxin B is a prevalent secondary hazardous metabolite generated by fungus present in feed ingredients and the surrounding environment: enzymes are currently being recognized as an efficient and promising approach to reducing the associated risks. The objective of this study was to assess the effects of varying doses of enzyme complexes on several parameters in laying hens that were exposed to aflatoxin. During an 8-week experiment, a total of 288 Yukou Jingfen No.

View Article and Find Full Text PDF

Hyperlipidemia is a major contributor to metabolic complications and tissue damage, leading to conditions such as liver steatosis, atherosclerosis, and obesity. This study aimed to investigate the effects of aqueous artichoke bract extract (AE) on lipid metabolism, liver antioxidative defense, and liver steatosis in mice fed a high-fat, high-sucrose diet while elucidating the underlying mechanisms. An 8-week study used hyperlipidemic mice treated with AE at daily doses of 100 and 200 mg/kg bw, compared to fenofibrate.

View Article and Find Full Text PDF

Exploring the Effects of Zingerone on Differentiation and Signalling Pathways in Bone Cell Lines.

Metabolites

December 2024

Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa.

Objective: Ensuring adequate bone health is crucial for preventing conditions such as osteoporosis and fractures. Zingerone, a phytonutrient isolated from cooked ginger, has gained attention for its potential benefits in bone health. This study evaluated the osteoprotective potential of zingerone and its effects on differentiation and signalling pathways using SAOS-2 osteosarcoma and RAW264.

View Article and Find Full Text PDF

possesses a significant concentration of bioactive compounds and has been demonstrated to have a variety of pharmacological properties, although its sprout has not been extensively studied. Thus, the protective effects of sprout hydroalcoholic extract (BNSE) on lipid homeostasis, hepatotoxicity, and nephrotoxicity in cyclophosphamide (CYP)-induced toxicity in rats were examined in this study. Four experimental rat groups ( = 8 for each group) were examined as follows: NR, normal rats that received normal saline by oral gavage daily; CYP, injected with a single dose of CYP at 250 mg kg intraperitoneally (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!