Galanin modulates the activity of proopiomelanocortin neurons in the isolated mediobasal hypothalamus of the male rat.

Neuroscience

INSERM U-422, IFR 22, Neuroendocrinology and Neuronal Physiopathology, IFR 22, Place de Verdun, 59045 Lille, France.

Published: August 2002

It has become apparent that galanin as well as proopiomelanocortin-derived peptides, such as beta-endorphin, play an important role in the hypothalamic circuitry that regulates neuroendocrine functions and appetite behavior. We have recently shown that GalR1 and GalR2 galanin receptor mRNAs are expressed in proopiomelanocortin neurons of the arcuate nucleus, suggesting a direct modulatory action of galanin on the proopiomelanocortin neuronal system. In the present study, we investigated the effect of galanin on beta-endorphin release and proopiomelanocortin mRNA expression from male rat mediobasal hypothalamic fragments incubated ex vivo. Galanin induced a decrease of spontaneous beta-endorphin release within the first 30-60 min of incubation and this effect was blocked by the galanin receptor antagonist galantide. Co-incubation of galanin with FK-506 (tacrolimus), a calcineurin inhibitor, suppressed the inhibitory effect of galanin on beta-endorphin release, suggesting that calcineurin is involved in the galanin-evoked decrease in beta-endorphin release. Measurement of beta-endorphin levels in the tissues at the end of the incubation period (120 min) revealed that galanin caused a two-fold increase of beta-endorphin peptide concentration in the mediobasal hypothalamic tissues. Concurrently, galanin induced an increase in the mean density of silver grains overlying proopiomelanocortin neurons after 60 min of incubation, an effect antagonized by galantide. Finally, reverse transcription-polymerase chain reaction analysis revealed that the mRNAs for the three galanin receptor subtypes (i.e. GalR1, GalR2, and GalR3) were expressed in the incubated mediobasal hypothalamic fragments. Taken as a whole, our results indicate that galanin plays a modulatory role on proopiomelanocortin neurons and this interrelation contributes to the elucidation of the neural circuitry that controls, among others, gonadotropin-releasing hormone function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0306-4522(02)00040-4DOI Listing

Publication Analysis

Top Keywords

proopiomelanocortin neurons
16
beta-endorphin release
16
galanin
13
galanin receptor
12
mediobasal hypothalamic
12
male rat
8
galr1 galr2
8
galanin beta-endorphin
8
hypothalamic fragments
8
galanin induced
8

Similar Publications

Although mammals resist both acute weight loss and weight gain, the neural circuitry mediating bi-directional defense against weight change is incompletely understood. Global constitutive deletion of the melanocortin-3-receptor (MC3R) impairs the behavioural response to both anorexic and orexigenic stimuli, with MC3R knockout mice demonstrating increased weight gain following anabolic challenges and increased weight loss following anorexic challenges (i.e.

View Article and Find Full Text PDF

Melanocortin 4 receptor mutation in obesity.

World J Exp Med

December 2024

Department of Internal Medicine, Gayatri Vidya Parishad Institute of Healthcare and Medical Technology, Visakhapatnam 530048, Andhra Pradesh, India.

Obesity is increasingly prevalent worldwide, with genetic factors contributing to its development. The hypothalamic leptin-melanocortin pathway is central to the regulation of appetite and weight; leptin activates the proopiomelanocortin neurons, leading to the production of melanocortin peptides; these in turn act on melanocortin 4 receptors (MC4R) which suppress appetite and increase energy expenditure. MC4R mutations are responsible for syndromic and non-syndromic obesity.

View Article and Find Full Text PDF

Nesfatin-1 is involved in hyperbaric oxygen-mediated therapeutic effects in high fat diet-induced hyperphagia in mice.

Peptides

January 2025

Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao 266000, China. Electronic address:

Article Synopsis
  • Obesity is a significant global health concern, and safe treatments are needed.
  • The study explored hyperbaric oxygen (HBO) therapy as a potential method to reduce overeating and high energy intake in mice fed a high-fat diet.
  • Results showed that HBO treatment decreased food intake and altered brain activity linked to hunger regulation, potentially involving the nesfatin-1 peptide and the melanocortin system.
View Article and Find Full Text PDF

Excessive consumption of vegetable oils such as soybean and canolla oils containing ω-6 polyunsaturated fatty acids is considered one of the most important epidemiological factors leading to the progression of lifestyle-related diseases. However, the underlying mechanism of vegetable-oil-induced organ damage is incompletely elucidated. Since proopiomelanocortin (POMC) neurons in the hypothalamus are related to the control of appetite and energy expenditure, their cell degeneration/death is crucial for the occurrence of obesity.

View Article and Find Full Text PDF

During the periparturient period, dairy cows experience negative energy balance due to reduced feed intake, leading to adipose tissue breakdown, liver damage, and fat accumulation. This study examined the gut-liver-brain axis to explore the link between fatty liver disease, changes in hypothalamic appetite-related neurons, and microbiome shifts in dairy cows. Thirty cows were monitored, with daily DMI recordings and blood sampling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!