Molecular aspects of acute inhibition of Na(+)-H(+) exchanger NHE3 by A(2)-adenosine receptor agonists.

J Physiol

Department of Physiology and Pathophysiology, Division of Vegetative Physiology and Pathophysiology, Georg-August-University of Göttingen, D-37073 Göttingen, Germany.

Published: June 2002

Adenosine regulates Na(+) homeostasis by its acute effects on renal Na(+) transport. We have shown in heterologously transfected A6/C1 cells (renal cell line from Xenopus laevis) that adenosine-induced natriuresis may be effected partly via A(2) adenosine receptor-mediated inactivation of the renal brush border membrane Na(+)-H(+) exchanger NHE3. In this study we utilized A6/C1 cells stably expressing wild-type as well as mutated forms of NHE3 to assess the molecular mechanism underlying A(2)-dependent control of NHE3 function. Cell surface biotinylation combined with immunoprecipitation revealed that NHE3 is targeted exclusively to the apical domain and that the endogenous Xenopus NHE is located entirely on the basolateral side of A6/C1 transfectants. Stimulation of A(2)-adenosine receptors located on the basolateral side for 15 min with CPA (N6-cyclopentyladenosine) acutely decreased NHE3 activity (microspectrofluorimety). This effect was mimicked by 8-bromo-cAMP and entirely blocked by pharmacological inhibition of PKA (with H89) or singular substitution of two PKA target sites (serine 552 and serine 605) on NHE3. Downregulation of NHE3 activity by CPA was attributable to a reduction of NHE3 intrinsic transport activity without change in surface NHE3 protein at 15 min. At 30 min, the decrease in transport activity was associated with a decrease in apical membrane NHE3 antigen. In conclusion, two highly conserved target serine sites on NHE3 determine NHE3 modulation upon A(2)-receptor activation and NHE3 inactivation by adenosine proceeds via two phases with distinct mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290320PMC
http://dx.doi.org/10.1113/jphysiol.2001.013438DOI Listing

Publication Analysis

Top Keywords

nhe3
14
na+-h+ exchanger
8
exchanger nhe3
8
a6/c1 cells
8
basolateral side
8
nhe3 activity
8
transport activity
8
molecular aspects
4
aspects acute
4
acute inhibition
4

Similar Publications

Dipeptidyl peptidase 4 (DPP4) is a transmembrane serine exopeptidase abundantly expressed in the kidneys, predominantly in the proximal tubule (PT); however, its non-enzymatic functions in this nephron segment remain poorly understood. While DPP4 physically associates with the Na /H exchanger isoform 3 (NHE3) and its inhibitors exert natriuretic effects, the DPP4 role in blood pressure (BP) regulation remains controversial. This study investigated the effects of PT-specific deletion ( ) and global deletion ( ) on systolic blood pressure (SBP), natriuresis, and NHE3 regulation under baseline and angiotensin II (Ang II)-stimulated conditions in both male and female mice.

View Article and Find Full Text PDF

Possible involvement of up-regulated salt-dependent glucose transporter-5 (SGLT5) in high-fructose diet-induced hypertension.

Hypertens Res

December 2024

Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kamoda 1981, Kawagoe, Saitama, 350-8550, Japan.

Excessive fructose intake causes a variety of adverse conditions (e.g., obesity, hepatic steatosis, insulin resistance and uric acid overproduction).

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) is a major global health problem. Hyperphosphatemia is frequent in CKD and a reason for increased morbidity and mortality as it generates hyperparathyroidism, high fibroblast growth factor 23 (FGF23), and hypocalcemia. Available hyperphosphatemia therapies still have limitations, including risk of metal overload, cardiovascular calcification, and systemic adverse effects (AEs).

View Article and Find Full Text PDF

Regulation of NHE3 subcellular localization in epididymal principal cells: pH, cyclic adenosine 3,5 monophosphate (cAMP), and adenosine signaling.

Andrology

December 2024

Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Centre Hospitalier Universitaire de Québec - Research Centre, and Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle - Université Laval, Québec, QC, Canada.

Introduction: The epididymis creates an optimal acidic luminal environment for sperm maturation and storage. In epididymal principal cells (PCs), proton secretion is activated by the accumulation of the sodium-proton exchanger type 3, NHE3 (SLC9A3), in apical stereocilia. PCs also secrete ATP, which is hydrolyzed into adenosine by ectonucleotidases.

View Article and Find Full Text PDF

In lambs, weaning imposes stress that can contribute to impaired rumen epithelial barrier functionality and immunological dysregulation. In this study, the effects of a yeast co-culture consisting of and (NM) on rumen health in lambs was evaluated, with a focus on parameters including growth performance, ruminal fermentation, and epithelial barrier integrity, ruminal metabolic function, and the composition of the ruminal bacteria. In total, 24 lambs were grouped into four groups of six lambs including a control (C) group fed a basal diet, and N, M, and NM groups in which lambs were fed the basal diet respectively supplemented with yeast cultures (30 g/d per head), yeast cultures (30 g/d per head), and co-cultures of both yeasts (30 g/d per head), the experiment lasted for 42 d.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!