Presynaptic and postsynaptic membrane activities during experimental metabolic inhibition were analysed in mechanically dissociated rat hippocampal neurons using nystatin-perforated and conventional whole-cell patch clamp recordings. NaCN, an inhibitor of mitochondrial ATP synthesis, induced an outward current across the postsynaptic soma membrane. This current was blocked by tolbutamide, a sulfonylurea, which blocks ATP-sensitive K+ (KATP) channels. The presynaptic effect of metabolic inhibitors such as NaCN, NaN3, or glucose-free solution was to increase the frequency of GABAergic miniature inhibitory postsynaptic currents (mIPSCs). Tolbutamide had no effect on this increase in mIPSC frequency induced by metabolic inhibition. Diazoxide, a KATP channel opener, evoked a similar somatic outward current in a dose-dependent manner. In addition, diazoxide decreased the frequency of mIPSCs in a dose-dependent fashion. Both these pre- and postsynaptic effects of diazoxide were reversed by tolbutamide, suggesting the existence of KATP channels on both pre- and postsynaptic membranes. These results confirm the presence of KATP channels on both the pre- and postsynaptic membranes but indicate that the channels have significantly different sensitivities to metabolic inhibition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290338 | PMC |
http://dx.doi.org/10.1113/jphysiol.2002.018267 | DOI Listing |
Ann Neurosci
January 2025
Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
Background: Stroke is one of the leading causes of death and long-term adult disability worldwide. Stroke causes neurodegeneration and impairs synaptic function. Understanding the role of synaptic proteins and associated signalling pathways in stroke pathology could offer insights into therapeutic approaches as well as improving rehabilitation-related treatment regimes.
View Article and Find Full Text PDFJ Neurosci
January 2025
Carney Institute for Brain Science, Brown University, Providence, RI 02912
The neuromuscular junction (NMJ) is the linchpin of nerve-evoked muscle contraction. Broadly, the function of the NMJ is to transduce nerve action potentials into muscle fiber action potentials (MFAPs). Efficient neuromuscular transmission requires both cholinergic signaling, responsible for generation of endplate potentials (EPPs), and excitation, the amplification of the EPP by postsynaptic voltage-gated sodium channels (Nav1.
View Article and Find Full Text PDFWhile CNS microglia have well-established roles in synapse pruning during neurodevelopment, only a few studies have identified roles for microglia in synapse formation. These studies focused on the cortex and primary sensory circuits during restricted developmental time periods, leaving substantial gaps in our understanding of the early developmental functions of microglia. Here we investigated how the absence of microglia impacts synaptic development in the nucleus accumbens (NAc), a region critical for emotional regulation and motivated behaviors and where dysfunction is implicated in psychiatric disorders that arise early in life.
View Article and Find Full Text PDFOrganisms continually tune their perceptual systems to the features they encounter in their environment . We have studied how ongoing experience reorganizes the synaptic connectivity of neurons in the olfactory (piriform) cortex of the mouse. We developed an approach to measure synaptic connectivity , training a deep convolutional network to reliably identify monosynaptic connections from the spike-time cross-correlograms of 4.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
The brain presents various structural and functional sex differences, for which multiple factors are attributed: genetic, epigenetic, metabolic, and hormonal. While biological sex is determined by both sex chromosomes and sex hormones, little is known about how these two factors interact to establish this dimorphism. Sex differences in the brain also affect its resident immune cells, microglia, which actively survey the brain parenchyma and interact with sex hormones throughout life.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!