Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Multimillion-atom molecular-dynamics simulations are used to investigate the shock-induced phase transformation of solid iron. Above a critical shock strength, many small close-packed grains nucleate in the shock-compressed body-centered cubic crystal growing on a picosecond time scale to form larger, energetically favored grains. A split two-wave shock structure is observed immediately above this threshold, with an elastic precursor ahead of the lagging transformation wave. For even higher shock strengths, a single, overdriven wave is obtained. The dynamics and orientation of the developing close-packed grains depend on the shock strength and especially on the crystallographic shock direction. Orientational relations between the unshocked and shocked regions are similar to those found for the temperature-driven martensitic transformation in iron and its alloys.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1070375 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!