The expression of interferon gamma (IFNgamma) increases after neural injury, and it is sustained in chronic inflammatory conditions such as multiple sclerosis and infection with human immunodeficiency virus. To understand how exposure to this proinflammatory cytokine might affect neural function, we examined its effects on cultures of neurons derived from the central and peripheral nervous systems. IFNgamma inhibits initial dendritic outgrowth in cultures of embryonic rat sympathetic and hippocampal neurons, and this inhibitory effect on process growth is associated with a decrease in the rate of synapse formation. In addition, in older cultures of sympathetic neurons, IFNgamma also selectively induces retraction of existing dendrites, ultimately leading to an 88% decrease in the size of the arbor. Dendritic retraction induced by IFNgamma represents a specific cellular response because it occurs without affecting axonal outgrowth or cell survival, and it is not observed with tumor necrosis factor alpha or other inflammatory cytokines. IFNgamma-induced dendritic retraction is associated with the phosphorylation and nuclear translocation of signal transducer and activator of transcription 1 (STAT1), and expression of a dominant-negative STAT1 construct attenuates the inhibitory effect of IFNgamma. Moreover, retrograde dendritic retraction is observed when distal axons are selectively exposed to IFNgamma. These data imply that IFNgamma-mediated STAT1 activation induces both dendritic atrophy and synaptic loss and that this occurs both at the sites of IFNgamma release and at remote loci. Regressive actions of IFNgamma on dendrites may contribute to the neuropathology of inflammatory diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6758811 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.22-11-04530.2002 | DOI Listing |
It is well known that activation of NMDA receptors can trigger long-term synaptic depression (LTD) and that a morphological correlate of this functional plasticity is spine retraction and elimination. Recent studies have led to the surprising conclusion that NMDA-induced spine shrinkage proceeds independently of ion flux and requires the initiation of protein synthesis, highlighting an unappreciated contribution of mRNA translation to non-ionotropic NMDAR signaling. Here we used NMDA-induced spine shrinkage in slices of mouse hippocampus as a readout to investigate this novel modality of synaptic transmission.
View Article and Find Full Text PDFJ Mol Histol
December 2024
Grupo de MorfologÃa Celular, Instituto Nacional de Salud (INS), Av. Calle 26 No. 51-20, Bogotá, DC, 111321, Colombia.
The effect of rabies virus infection on dendritic morphology and on the expression of the MAP2 protein in Purkinje cells in the cerebellum of mice was studied. ICR mice were inoculated with rabies virus, and six days later, the mice were sacrificed, the cerebellum was removed and processed for Golgi-Cox staining or MAP2 immunohistochemistry. Infection with rabies virus altered the dendritic pattern of Purkinje cells ranged from moderate changes to accentuated retraction in the dendritic tree of some Purkinje cells.
View Article and Find Full Text PDFAdaptive immunity relies on dendritic cell (DC) migration to transport antigens from tissues to lymph nodes. Galectins, a family of β-galactoside-binding proteins, control cell membrane organisation, exerting crucial roles in multiple physiological processes. Here, we report a novel mechanism underlying cell polarity and uropod retraction.
View Article and Find Full Text PDFHeliyon
November 2024
Laboratorio de NeurofisiologÃa Experimental, Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Edificio BIO1, Ciudad Universitaria, CP 72570, Puebla, Puebla, Mexico.
Obesity, a prevalent disorder, predisposes individuals to metabolic syndrome, type 2 diabetes mellitus, and high blood pressure. Obesity has been investigated in various organisms that display genetic, high-fat, and high-carbohydrate diet (HFCD)-induced obesity. Recent studies have found that both male and female Zucker rats, which are genetically obese, exhibit alterations in dendritic arborization of neurons in certain structures of the central nervous system.
View Article and Find Full Text PDFCommun Biol
September 2024
Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Alzheimer's disease (AD), characterized by cognitive decline, is increasingly recognized as a disorder marked by synaptic loss and dysfunction. Despite this understanding, the underlying pathophysiological mechanisms contributing to synaptic impairment remain largely unknown. In this study, we elucidate a previously undiscovered signaling pathway wherein the S-nitrosylation of the Cdk5 activator p39, a post-translational modification involving the addition of nitric oxide to protein cysteine residues, plays a crucial role in synaptic dysfunction associated with AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!