The present study uses the embryonic chick to examine in vivo the mechanisms and regulation of Schwann cell programmed cell death (PCD) in spinal and cranial peripheral nerves. Schwann cells are highly dependent on the presence of axons for survival because the in ovo administration of NMDA, which excitotoxically eliminates motoneurons and their axons by necrosis, results in a significant increase in apoptotic Schwann cell death. Additionally, pharmacological and surgical manipulation of axon numbers also affects the relative amounts of Schwann cell PCD. Schwann cells undergoing both normal and induced PCD display an apoptotic-like cell death, using a caspase-dependent pathway. Furthermore, axon elimination results in upregulation of the p75 and platelet-derived growth factor receptors in mature Schwann cells within the degenerating ventral root. During early development, Schwann cells are also dependent on axon-derived mitogens; the loss of axons results in a decrease in Schwann cell proliferation. Axon removal during late embryonic stages, however, elicits an increase in proliferation, as is expected from these more differentiated Schwann cells. In rodents, Schwann cell survival is regulated by glial growth factor (GGF), a member of the neuregulin family of growth factors. GGF administration to chick embryos selectively rescued Schwann cells during both normal PCD and after the loss of axons, whereas other trophic factors tested had no effect on Schwann cell survival. In conclusion, avian Schwann cells exhibit many similarities to mammalian Schwann cells in terms of their dependence on axon-derived signals during early and later stages of development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6758805 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.22-11-04509.2002 | DOI Listing |
Cancer Metastasis Rev
January 2025
Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
Nerve signaling within the tumor microenvironment (TME) plays a critical role in the initiation, progression, and metastasis of solid tumors. Due to their highly responsive behavior and activation upon injury and cancer onset, this review specifically focuses on how sympathetic nerves rewire the TME. Within tumors, sympathetic nerves closely interact with various TME components, and their combined signaling often shifts tumor-intrinsic physiology toward tumor-supportive phenotypes.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Faculty of Life Sciences, Leipzig University, Leipzig, Germany.
Communication sound processing in mouse AC is lateralized. Both left and right AC are highly specialised and differ in auditory stimulus representation, functional connectivity and field topography. Previous studies have highlighted intracortical functional circuits that explain hemispheric stimulus preference.
View Article and Find Full Text PDFBiomater Sci
January 2025
Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, Shandong, China.
Accelerated rehabilitation following facial nerve injury presents unique clinical challenges. This study evaluates the therapeutic effects of concentrated growth factor (CGF) on facial nerve recovery in a rabbit model and on RSC96 Schwann cells. Characterization of the CGF membrane (CGFM) revealed a three-dimensional fibrin network with embedded platelets, and representative growth factors, including TGF-β1, PDGF-BB, IGF-1, bFGF, and VEGF, were detected.
View Article and Find Full Text PDFMyelination facilitates the rapid conduction of action potentials along axons. In the central nervous system (CNS), myelinated axons vary over 100-fold in diameter, with conduction speed scaling linearly with increasing diameter. Axon diameter and myelination are closely interlinked, with axon diameter exerting a strong influence on myelination.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Histological chorioamnionitis (HCA) is a form of maternal immune activation (MIA) linked to an increased risk of neurodevelopmental disorders in offspring. Our previous study identified neurodevelopmental impairments in an MIA mouse model mimicking HCA. Thus, this study investigated the role of CD11c microglia, key contributors to myelination through IGF-1 production, in this pathology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!