Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To elucidate the mechanisms mediating the reported transient physiological glucocorticoid resistance in G2/M cell cycle phase, we sought to establish a model system of glucocorticoid-resistant cells in G2. We synchronized various cell lines in G2 to measure dexamethasone (DEX)-induced transactivation of either two endogenous promoters (rat tyrosine aminotransferase and mouse metallothionein I) or the mouse mammary tumor virus (MMTV) promoter stably or transiently transfected. To circumvent the need for synchronization drugs, we stably transfected an MMTV-driven green fluorescent protein to directly correlate DEX-induced transactivation with the cell cycle position for each cell of an asynchronous population using flow cytometry. Surprisingly, all promoters tested were DEX-inducible in G2. Even in mitotic cells, only the stably transfected MMTV promoter was repressed, whereas the same promoter transiently transfected was inducible. The use of Hoechst 33342 for synchronization in previous studies probably caused a misinterpretation, because we detected interference of this drug with GR-dependent transcription independent of the cell cycle. Finally, GR activated a simple promoter in G2, excluding a functional effect of cell cycle-dependent phosphorylation of GR, as implied previously. We conclude that GR itself is fully functional throughout the entire cell cycle, but GR responsiveness is repressed in mitosis due to chromatin condensation rather than to specific modification of GR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/mend.16.6.0842 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!