Process development of a recombinant antibody/interleukin-2 fusion protein expressed in protein-free medium by BHK cells.

J Biotechnol

IBET/ITQB-Instituto de Biologia Experimental e Tecnológica/Instituto de Tecnologia Química e Biológica, Apartado 12, P-2781-901 Oeiras, Portugal.

Published: June 2002

The production, purification and stability of quality (in terms of integrity and glycosylation) of an antibody/interleukin-2 fusion protein with potential application in tumour-targeted therapy expressed in BHK21 cells are described. Consistency of the product throughout time was determined by analysis of glycosylation of the fusion protein using MALDI-TOF mass spectroscopy and HPAEC-PAD combined with product integrity studies by SDS-PAGE and Western blotting. These investigations showed consistent expression in terms of integrity and of three major oligosaccharide structures of the fusion protein after 62 generations. The data obtained at this stage indicated the suitability of the cell line for production purposes. Different approaches for the production of this protein were subsequently carried out. The relative productivity of the recombinant fusion protein and general performance of the cells in two different protein-free medium (PFM) culture systems, continuous chemostat and continuous perfusion using a Centritech centrifuge as a cell retention device, were studied. The results indicate that the chemostat culture resulted in more stable and controllable nutrient environment, which could indicate better product consistency, in accordance with what has been observed under serum-containing conditions, in relation to the perfusion culture. Finally, product obtained from the chemostat culture was analysed and purified. The purification process was optimised with an increase in the overall yield from 38 to 70% being obtained, a significant improvement with important consequences for the implementation of an industrial-scale culture system. In conclusion, it was possible to produce and purify the recombinant antibody/interleukin-2 fusion protein assuring the quality and stability of the product in terms of integrity and glycosylation. Therefore, a candidate production process was established.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0168-1656(02)00028-7DOI Listing

Publication Analysis

Top Keywords

fusion protein
24
antibody/interleukin-2 fusion
12
terms integrity
12
recombinant antibody/interleukin-2
8
protein-free medium
8
integrity glycosylation
8
chemostat culture
8
protein
7
fusion
6
product
5

Similar Publications

How SNARE proteins generate force to fuse membranes.

Biophys J

January 2025

Department of Chemical Engineering, Columbia University, New York, NY 10027. Electronic address:

Membrane fusion is central to fundamental cellular processes such as exocytosis, when an intracellular machinery fuses membrane-enclosed vesicles to the plasma membrane for contents release. The core machinery components are the SNARE proteins. SNARE complexation pulls the membranes together, but the fusion mechanism remains unclear.

View Article and Find Full Text PDF

The homeotic transformation of stamens into pistil-like structures (pistillody) causes cytoplasmic male sterility (CMS). This phenomenon is widely present in plants, and might be induced by intracellular communication (mitochondrial retrograde signaling), but its systemic regulating mechanism is still unclear. In this study, morphological observation showed that the stamens transformed into pistil-like structures, leading to flat and dehiscent pistils, and fruit set decrease in sua-CMS (MS K326, somatic fusion between Nicotiana.

View Article and Find Full Text PDF

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.

View Article and Find Full Text PDF

Identification of a novel TOP2B::AFF2 fusion gene in B-cell acute lymphoblastic leukemia.

Sci Rep

January 2025

Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China.

Genetic alterations play a pivotal role in leukemic clonal transformation, significantly influencing disease pathogenesis and clinical outcomes. Here, we report a novel fusion gene and investigate its pathogenic role in acute lymphoblastic leukemia (ALL). We engineer a transposon transfection system expressing the TOP2B::AFF2 transcript and introduce it into Ba/F3 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!