Considerable progress has been made in manipulating oxidative biotransformations using oxygenases. Substrate acceptance, catalytic activity, regioselectivity and stereoselectivity have been improved significantly by substrate engineering, enzyme engineering or biocatalyst screening. Preparative biotransformations have been carried out to synthesize useful pharmaceutical intermediates or chiral synthons on the gram to several-hundred-gram scale, by use of whole cells of wild type or recombinant strains. The synthetic application of oxygenases in vitro has been shown to be possible by enzymatic or electrochemical regeneration of NADH or NADPH.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1367-5931(02)00296-xDOI Listing

Publication Analysis

Top Keywords

oxidative biotransformations
8
biotransformations oxygenases
8
oxygenases considerable
4
considerable progress
4
progress manipulating
4
manipulating oxidative
4
oxygenases substrate
4
substrate acceptance
4
acceptance catalytic
4
catalytic activity
4

Similar Publications

Muscarinic acetylcholine receptor 3 localized to primary endothelial cilia regulates blood pressure and cognition.

Sci Rep

January 2025

Department of Pharmacology and Experimental Therapeutics; MS 1015, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Health Education Building; Room 282E, 3000 Arlington Ave, Toledo, OH, 43614, USA.

We previously demonstrated that the inability of primary endothelial cilia to sense fluid shear stress can lead to nitric oxide (NO) deficiency and cause hypertension (HTN). Decreased biosynthesis of NO contributes to cerebral amyloid angiopathy in Alzheimer's disease (AD) patients through increased deposition of amyloid beta (Aβ). However, the molecular mechanisms underlying the pathogenesis of HTN and AD are incompletely understood.

View Article and Find Full Text PDF

Kidney stones, a common urological disease, may involve the brain-kidney axis in their formation, though the specific mechanism remains unclear. This study aimed to investigate the effects of blue light on relevant metabolic indicators and oxidative stress status in rats with kidney stones through the brain-kidney axis. A rat model of kidney stones was established by administering 1% ethylene glycol and 2% ammonium chloride.

View Article and Find Full Text PDF

Versatile nitrate-respiring heterotrophs are previously concealed contributors to sulfur cycle.

Nat Commun

January 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.

Heterotrophic denitrifiers play crucial roles in global carbon and nitrogen cycling. However, their inability to oxidize sulfide renders them vulnerable to this toxic molecule, which inhibits the key enzymatic reaction responsible for reducing nitrous oxide (NO), thereby raising greenhouse gas emissions. Here, we applied microcosm incubations, community-isotope-corrected DNA stable-isotope probing, and metagenomics to characterize a cohort of heterotrophic denitrifiers in estuarine sediments that thrive by coupling sulfur oxidation with denitrification through chemolithoheterotrophic metabolism.

View Article and Find Full Text PDF

Research in aging often refers to animal models, particularly C57BL/6J (B6J) mice, considered gold standard. However, B6J mice are distributed by different suppliers, which results in divers substrains exhibiting notable phenotypic differences. To ensure a suitable phenotype of cardiac aging, we performed heart analyses of young (5 months) and old B6J mice (24 months) from two substrains: B6JRj (Janvier) and B6JCrl mice (Charles River).

View Article and Find Full Text PDF

A cost-effective strategy is reported utilizing ionic liquid (IL), 1-hexyl-3-methylimidazolium bisulfate ([HMIM] HSO), to delaminate TiC MXene, thereby enhancing its efficiency in electrocatalyzing tryptophan (Trp) oxidation. The positively charged IL effectively intercalates within the negatively charged MXene layers, fostering structural stability through π-π stacking and electrostatic interactions. Consequently, the resulting IL-TiC composite not only maintained the inherent electronic conductivity of TiC but also significantly augmented its electrocatalytic prowess.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!