Heparanase and platelet factor-4 induce smooth muscle cell proliferation and migration via bFGF release from the ECM.

J Biochem

Department of Biochemistry and Cell Biology, Rice University, P.O. Box MS-Houston, Texas 77251, USA.

Published: June 2002

Basic fibroblast growth factor (bFGF) has been shown to play an instrumental role in the cascade of events leading to restenosis; however, the mechanisms of bFGF activation following vascular injury have remained elusive. We have demonstrated that heparanase and platelet factor-4 (PF4), released from activated platelets at the site of injury, liberate bFGF from the extracellular matrix (ECM) of vascular smooth muscle cells (SMC), resulting in the induction of SMC proliferation and migration. Increases in proliferation and migration were inhibited by treatment with a bFGF-neutralizing antibody, suggesting that proliferation and migration in response to heparanase or PF4 are mediated by bFGF activation. When platelets were seeded on top of SMCs, degranulation products were found to release bFGF from the ECM, increasing cell proliferation and cell migration. Again, these increases in SMC proliferation and migration were inhibited by treatment with an anti-bFGF antibody. Furthermore, these increases in proliferation were completely inhibited by treatment with an anti-heparanase antibody. Platelet degranulation products, such as heparanase and PF4, may liberate bFGF from extracellular sequestration, activating the growth factor and inducing the SMC proliferation and migration that contribute to the wound healing response following vascular injury.

Download full-text PDF

Source
http://dx.doi.org/10.1093/oxfordjournals.jbchem.a003182DOI Listing

Publication Analysis

Top Keywords

proliferation migration
24
smc proliferation
12
inhibited treatment
12
heparanase platelet
8
platelet factor-4
8
smooth muscle
8
proliferation
8
cell proliferation
8
growth factor
8
bfgf activation
8

Similar Publications

Effect of zoledronic acid on biological characteristics of cervical cancer cells.

Afr J Reprod Health

November 2024

Department of Obstetrics and Gynecology, Wuxi No.2 People's Hospital, Wuxi 214002, Jiangsu Province, China.

Cervical cancer (CC) is a malignant tumor in females characterized by high incidence and mortality rates, often resulting in a poor prognosis for patients. Zoledronic acid (ZA), a third-generation bisphosphonate, exhibits anti-tumor properties across various types of tumors. To further understand the effect of ZA in the treatment of CC, this article included two kinds of human CC cells (CCCs) as the research object, examining the impact of varying levels of ZA on the cells' biological properties.

View Article and Find Full Text PDF

Restoration of miR-200 expression suppresses proliferation and mobility of pancreatic cancer cell.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of General Surgery, Tianjin First Center Hospital, Tianji, 300384, China.

A number of various human malignancies have been associated with abnormal microRNAs (miRNA) expression. There are evidence that miR-200 operates as both tumor suppressor and an onco-miR in a variety of tumors. In this study, we evaluated the effects of miR-200 on the proliferation and migration of pancreatic cancer cells, as well as the underlying molecular pathways.

View Article and Find Full Text PDF

To investigate the role of silent information regulator 6 (SIRT6) in regulating podocyte injury in diabetic nephropathy (DN) through autophagy mediated by Notch signaling pathway. A blank control group (group A), a diabetic nephropathy group (group B), and a Sirt6 intervention group (group C) were established. The group A cells were human normal glomerular podocyte cell lines (HGPCs) without any treatment.

View Article and Find Full Text PDF

Aims: Human periodontal ligament stem cells (hPDLSCs) exhibit an enormous potential to regenerate periodontal tissue. However, their translatability to the clinical setting is constrained by technical difficulties in standardizing culture conditions. The aim was to assess complex culture conditions using a proteomic-based protocol to standardize multi-layer hPDLSC cultivation methodology.

View Article and Find Full Text PDF

Background: Magnolia kobus DC (MO), as a plant medicine, has been reported to have various physiological activities, including neuroprotective, anti-inflammatory, and anti-diabetic effects. However, vascular protective effects of MO remain incompletely understood. In this study, we evaluated the vascular protective effect of MO against ferroptosis in a carotid artery ligation (CAL)-induced neointimal hyperplasia mouse model and in aortic thoracic smooth muscle A7r5 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!