We report a lethal phenotype of mouse embryo with a disruption in the gene encoding p116, a subunit of the translation initiation factor, eIF3. The amino acid sequence of mouse p116, as deduced from the cDNA, shows high homology (97%) with human p116, and contains the conserved RNA binding sites, RNP1 and RNP2. The p116 mRNA is ubiquitously expressed in various organs, suggesting a house-keeping function of the p116 protein. To obtain genetic evidence for the essential role of the p116 protein in mouse cells, we constructed mice with a disruption in the p116 gene. Heterozygous p116(+/-) mice were intercrossed, and the genotypes of the offspring were determined. The results indicated no p116(-/-) pups among 84 neonates. Also, there were no p116(-/-) embryos 13.5 days postcoitum (d.p.c.). Among 77 embryos, there was only one p116(-/-) embryo at the blastocyst stage (3.5 d.p.c.). These results indicate that p116 plays an essential role in the early stages of mouse development.

Download full-text PDF

Source
http://dx.doi.org/10.1093/oxfordjournals.jbchem.a003172DOI Listing

Publication Analysis

Top Keywords

p116
9
p116 gene
8
p116 protein
8
essential role
8
embryonic lethality
4
lethality mutant
4
mutant mice
4
mice deficient
4
deficient p116
4
gene report
4

Similar Publications

Bitter taste is an unpleasant taste modality that affects food consumption. Bitter peptides are generated during enzymatic processes that produce functional, bioactive protein hydrolysates or during the aging process of fermented products such as cheese, soybean protein, and wine. Understanding the underlying peptide sequences responsible for bitter taste can pave the way for more efficient identification of these peptides.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) play a crucial role in cell function by transducing signals from the extracellular environment to the inside of the cell. They mediate the effects of various stimuli, including hormones, neurotransmitters, ions, photons, food tastants and odorants, and are renowned drug targets. Advancements in structural biology techniques, including X-ray crystallography and cryo-electron microscopy (cryo-EM), have driven the elucidation of an increasing number of GPCR structures.

View Article and Find Full Text PDF

Psammaplin A analogues with modified disulfide bond targeting histone deacetylases: Synthesis and biological evaluation.

Eur J Med Chem

September 2024

Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.

Psammaplin A (PsA), a symmetrical bromotyrosine-derived disulfide marine metabolite, has been reported could inhibit HDAC1/2/3 through its thiol monomer. Inspired by the disuflide bond structure of this marine natural product, we designed and synthesized a series of PsA analogues, in which the disulfide bond of PsA was replaced with diselenide bond or cyclic disulfide/diselenide/selenenylsulfide motifs. We also studied the HDAC inhibition, cell growth inhibition, and apoptosis induction of these PsA analogues.

View Article and Find Full Text PDF

Background: High-density lipoprotein (HDL) protects against ischemia/reperfusion (I/R) injury via signaling through scavenger-receptor class B type-I (SR-BI) and sphingosine-1-phosphate receptors (S1PRs). We recently reported that HDL protects the hearts of spontaneously hypertensive rats (SHRs) against I/R injury in an SR-BI-dependent manner.

Objective: In this study, we examined the role of S1PRs in HDL-induced protection against myocardial I/R injury in hypertensive rats.

View Article and Find Full Text PDF

The transcriptome of the parapoxvirus Orf virus reveals novel promoters for heterologous gene expression by poxvirus vectors.

Virology

October 2023

Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, USA. Electronic address:

Orf virus (ORFV) has been used as a vaccine delivery vector for multiple animal species. Several strategies are being used to improve the immunogenicity and efficacy of ORFV vectors, including the use of poxviral promoter(s) with strong early and late activity capable of driving the expression of the heterologous genes for a prolonged time and eliciting a potent immune response. Here, we used RNA-sequencing (RNA-Seq) approach to analyze the transcriptome of ORFV during infection in primary ovine cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!