The estrogen receptor alpha (ERalpha) signaling plays an essential role in breast cancer progression and endocrine therapy. Mitogen-activated protein kinase (MAPK/Erk1/2) has been implicated in ligand-independent activation of ER, resulting in the cross-talk between growth factor and ER mediated signaling. In this study, we examined the effect of the cross-talk on estradiol (E(2))-mediated signaling, tumor growth and its effect on anti-estrogen therapy. Our findings demonstrate that expression of constitutively activated mitogen activated kinase kinase (MEK1), an immediate upstream activator of MAPK in estrogen receptor positive MCF-7 breast cancer cells (MEK/MCF-7), showed an increase in ERalpha-driven transcriptional activation. In MEK/MCF-7 cells maximal transactivation levels were achieved in response to treatment with much lower E(2) concentrations (10(-10) M E(2)) when compared to MCF-7 control cells (10(-8) M E(2)). Furthermore, we have seen an increased association between ERalpha and its nuclear coactivators AIB1 or TIF-2, in MEK/MCF-7 cells relative to those seen in MCF-7 control cells. In addition, in vivo studies show that MEK/MCF-7 cell tumors are approximately threefold larger than those of MCF-7 cell, in the presence of E(2). Immunohistochemical staining demonstrates that progesterone receptor (PR) and pS2, two E(2)-regulated gene products, are significantly increased in MEK/MCF-7 cell tumors compared to those of MCF-7 control tumors, suggesting that activation of ERalpha by MAPK enhances the expression of E(2)-regulated genes and accelerates tumor growth. Remarkably, the antiestrogens tamoxifen and ICI 182,780, were shown both in vitro and in vivo studies to efficiently antagonize the stimulatory effects of E(2) on ER regulated transactivation and tumor growth in MEK/MCF-7 as well as MCF-7 cell lines. Taken together, these data suggest that MAPK/ER cross-talk enhances ERalpha-mediated signaling and accelerates E(2)-dependent tumor growth without diminishing sensitivity to the inhibitory effects of anti-estrogens.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1205506DOI Listing

Publication Analysis

Top Keywords

tumor growth
20
mcf-7 control
12
cross-talk enhances
8
signaling tumor
8
estrogen receptor
8
breast cancer
8
mek/mcf-7 cells
8
compared mcf-7
8
control cells
8
vivo studies
8

Similar Publications

Background: Cutaneous melanoma is one of the most invasive and lethal skin malignant tumors. Compared to primary melanoma, metastatic melanoma (MM) presents poorer treatment outcomes and a higher mortality rate. The tumor microenvironment (TME) plays a critical role in MM progression and immunotherapy resistance.

View Article and Find Full Text PDF

Ultrasound-responsive nanoparticles for nitric oxide release to inhibit the growth of breast cancer.

Cancer Cell Int

December 2024

Department of Ultrasound, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.

Gas therapy represents a promising strategy for cancer treatment, with nitric oxide (NO) therapy showing particular potential in tumor therapy. However, ensuring sufficient production of NO remains a significant challenge. Leveraging ultrasound-responsive nanoparticles to promote the release of NO is an emerging way to solve this challenge.

View Article and Find Full Text PDF

Insulin-like growth factor II mRNA-binding proteins (IGF2BPs), a family of RNA-binding proteins, are pivotal in regulating RNA dynamics, encompassing processes such as localization, metabolism, stability, and translation through the formation of ribonucleoprotein complexes. First identified in 1999 for their affinity to insulin-like growth factor II mRNA, IGF2BPs have been implicated in promoting tumor malignancy behaviors, including proliferation, metastasis, and the maintenance of stemness, which are associated with unfavorable outcomes in various cancers. Additionally, non-coding RNAs (ncRNAs), particularly long non-coding RNAs, circular RNAs, and microRNAs, play critical roles in cancer progression through intricate protein-RNA interactions.

View Article and Find Full Text PDF

Transcriptomic data integration and analysis revealing potential mechanisms of doxorubicin resistance in chondrosarcoma cells.

Biochem Pharmacol

December 2024

Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan; Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan; Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu 30205, Taiwan. Electronic address:

Chondrosarcoma is a type of bone cancer that originates from cartilage cells. In clinical practice, surgical resection is the primary treatment for chondrosarcoma, but chemotherapy becomes essential for patients with metastasis or tumors in surgically inaccessible sites. However, drug resistance often leads to treatment failure.

View Article and Find Full Text PDF

Biomimetic membrane-coated nanoparticles specially permeate the inflammatory blood-brain barrier to deliver plasmin therapy for brain metastases.

J Control Release

December 2024

Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China. Electronic address:

Many brain-targeting drug delivery strategies have been reported to permeate the blood-brain barrier (BBB) via hijacking receptor-mediated transport. However, these receptor-based strategies could mediate whole-brain BBB crossing due to the wide intracranial expression of target receptors and lead to unwanted accumulation and side effects on healthy brain tissues. Inspired by brain metastatic processes and the selectivity of brain metastatic cancer cells for the inflammatory BBB, a biomimetic nanoparticle was developed by coating drug-loaded core with the inflammatory BBB-seeking erythrocyte-brain metastatic hybrid membrane, which can resist homotypic aggregation and specially bind and permeate the inflammatory BBB for specific drug delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!