The molecular mechanisms that underlie the maintenance of long-term potentiation (LTP) remain unclear. We have examined the influence of postsynaptic cAMP-dependent processes on LTP maintenance in CA1 hippocampal cells. After LTP induction, drugs affecting cAMP-dependent processes were perfused into the cell through a patch pipette. A cAMP analogue, Rp-cAMPS (4 mM), dramatically decreased the amplitude of potentiated synaptic responses. The amplitude of responses in the control pathway was also decreased but to a lesser extent, indicating a specific effect on the potentiation process. This specific effect was not due to the larger amplitude of potentiated responses, was not use-dependent and, unlike other factors that affect LTP maintenance, did not depend on the delay (2, 10, or 25 min) of drug application after LTP induction. Lower concentrations of Rp-cAMPS (1.0 and 0.4 mM) also produced an inhibitory effect but reduced the LTP and control pathways comparably. One possible action of Rp-cAMPS is competitive inhibition of protein kinase A (PKA). Surprisingly, a potent and noncompetitive PKA inhibitor, regulatory type II subunit of PKA, produced only a weak depression of potentiated and control responses indicating there must be other targets for Rp-cAMPS. Moreover, Sp-8-OH-cAMPS, which is an activator of PKA, and Rp-8-OH-cAMPS, which is a weak inhibitor of PKA, both produced effects similar to those of Rp-cAMPS. We conclude that there are postsynaptic cyclic nucleotide-dependent processes that can specifically alter the mechanisms that maintain LTP and that are not primarily dependent on PKA.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.2002.87.6.3018DOI Listing

Publication Analysis

Top Keywords

camp analogue
8
long-term potentiation
8
camp-dependent processes
8
ltp maintenance
8
ltp induction
8
amplitude potentiated
8
pka produced
8
ltp
7
pka
6
rp-camps
5

Similar Publications

Efficacy of cartilage-targeted IGF-1 in a mouse model of growth hormone insensitivity.

Front Endocrinol (Lausanne)

January 2025

Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, United States.

Recombinant human IGF-1 is used to treat severe primary IGF-1 deficiency, but this treatment requires twice-daily injection, often does not fully correct the growth deficit, and has important off-target effects. We therefore sought to target IGF-1 to growth plate cartilage by generating fusion proteins combining IGF-1 with single-chain human antibody fragments that target matrilin-3, a cartilage matrix protein. We previously showed that this cartilage-targeting IGF-1 fusion protein (CV1574-1) promoted growth plate function in a GH-deficient (lit) mouse model.

View Article and Find Full Text PDF

Background: Anterior cruciate ligament reconstruction (ACLR) is one of the most common orthopaedic procedures and one of the most well studied. Despite extensive research dedicated to ACLR, there is limited understanding of how chronic inflammatory systemic diseases (CIDs) such as rheumatoid arthritis and systemic lupus erythematosus affect outcomes.

Purpose: To compare the outcomes of ACLR in cohorts of patients with and without CID.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) and obesity are critical global health issues with rising incidence rates. Glucagon-like peptide-1 (GLP-1) analogues have emerged as effective treatments due to their ability to regulate blood glucose levels and gastric emptying through central nervous signals involving hypothalamic receptors, such as leptin. To address the short plasma half-life of native GLP-1, a C-16 fatty acid was conjugated to lysine in the GLP-1 analogue sequence to enhance its longevity.

View Article and Find Full Text PDF

Oleanolic acid inhibits appetite through the TGR5/cAMP signaling pathway.

J Nutr Biochem

January 2025

Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China. Electronic address:

Inhibition of appetite is an effective approach to fight obesity. Recently, bile acids have been reported to suppress appetite and alleviate obesity via the Takeda G protein-coupled receptor 5 (TGR5). However, whether the downstream signaling molecule cyclic adenosine monophosphate (cAMP) of TGR5 is involved in this process remains unclear.

View Article and Find Full Text PDF

Synthesis, Pharmacological Characterization, and Binding Mode Analysis of 8-Hydroxy-Tetrahydroisoquinolines as 5-HT Receptor Inverse Agonists.

ACS Chem Neurosci

January 2025

Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark.

The serotonin 7 receptor (5-HTR) regulates various processes in the central nervous system, including mood, learning, and circadian rhythm control, among others. Receptor activation can lead to activation of the Gα protein and a subsequent increase of intracellular cyclic adenosine monophosphate (cAMP). Receptor interaction with inverse agonists results in a decrease of basal cAMP levels and therefore a downstream effect of reduced neuronal excitability and neurotransmission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!