Purpose: During fixation and saccades, human eye movements obey Listing's law, which specifies the eye's torsional angle as a function of its horizontal and vertical position. Torsion of the eye is in part controlled by the fourth nerve. This study investigates whether the brain adapts to defective torsional control after fourth nerve palsy.

Methods: Thirteen patients with fourth nerve palsy (11 chronic, 2 acute), and 10 normal subjects were studied with scleral search coils. With the head immobile, subjects made saccades to a target that moved between straight ahead and eight eccentric positions. At each target position, fixation was maintained for 3 seconds before the next saccade. From the eye position data, we computed the plane of best fit, referred to as Listing's plane. Violations of Listing's law were quantified by computing the "thickness" of this plane, defined as the SD of the distances to the plane from the data points.

Results: Both the paretic and nonparetic eyes in patients with chronic fourth nerve palsy obeyed Listing's law during fixation and saccades. However, Listing's planes in both eyes had abnormal orientations, being rotated temporally, meaning the eye excyclotorted during downgaze and incyclotorted during upgaze. In contrast, the paretic eye of patients with acute fourth nerve palsy violated Listing's law during saccades. During downward saccades, transient torsional deviations moved the paretic eye out of Listing's plane. Torsional drifts returned the paretic eye to Listing's plane during subsequent fixation.

Conclusions: During saccades, acute fourth nerve palsy violates Listing's law, whereas chronic palsy obeys it, indicating that neural adaptation can restore Listing's law by adjusting the innervations to the remaining extraocular muscles, even when one eye muscle remains paretic. The transient torsional deviations during downward saccades in acute palsy are attributed to pulse-step mismatch, as a result of lesions in the trochlear nerve that lead to an imbalance of phasic and tonic signals reaching the muscles.

Download full-text PDF

Source

Publication Analysis

Top Keywords

listing's law
28
fourth nerve
28
nerve palsy
20
listing's plane
12
paretic eye
12
listing's
11
patients fourth
8
nerve
8
fixation saccades
8
eye
8

Similar Publications

New results in stereopsis and Listing's law.

Sci Rep

September 2024

Professor Emeritus, Department of Mathematics and Statistics, University of Houston-Downtown, One Main Street, Houston, TX, 77002, USA.

Human eyes' optical components are misaligned. This study presents comprehensive geometric constructions in the binocular system, with the eye model incorporating the fovea that is displaced from the posterior pole and the lens that is tilted away from the eye's optical axis. It extends their previously considered horizontal misalignment with the vertical components.

View Article and Find Full Text PDF

We recently developed a biomimetic robotic eye with six independent tendons, each controlled by their own rotatory motor, and with insertions on the eye ball that faithfully mimic the biomechanics of the human eye. We constructed an accurate physical computational model of this system, and learned to control its nonlinear dynamics by optimising a cost that penalised saccade inaccuracy, movement duration, and total energy expenditure of the motors. To speed up the calculations, the physical simulator was approximated by a recurrent neural network (NARX).

View Article and Find Full Text PDF

The first part of the paper contains a short review of the image processing in early vision is static, when the eyes and the stimulus are stable, and in dynamics, when the eyes participate in fixation eye movements. In the second part, we give an interpretation of Donders' and Listing's law in terms of the Hopf fibration of the 3-sphere over the 2-sphere. In particular, it is shown that the configuration space of the eye ball (when the head is fixed) is the 2-dimensional hemisphere SL+, called Listing hemisphere, and saccades are described as geodesic segments of SL+ with respect to the standard round metric.

View Article and Find Full Text PDF

An interesting problem for the human saccadic eye-movement system is how to deal with the degrees-of-freedom problem: the six extra-ocular muscles provide three rotational degrees of freedom, while only two are needed to point gaze at any direction. Measurements show that 3D eye orientations during head-fixed saccades in far-viewing conditions lie in Listing's plane (LP), in which the eye's cyclotorsion is zero (Listing's law, LL). Moreover, while saccades are executed as single-axis rotations around a stable eye-angular velocity axis, they follow straight trajectories in LP.

View Article and Find Full Text PDF

V1 neurons encode the perceptual compensation of false torsion arising from Listing's law.

Proc Natl Acad Sci U S A

August 2020

Hertie Institute for Clinical Brain Research, Department of Cognitive Neurology, University of Tübingen, 72076 Tübingen, Germany

We try to deploy the retinal fovea to optimally scrutinize an object of interest by directing our eyes to it. The horizontal and vertical components of eye positions acquired by goal-directed saccades are determined by the object's location. However, the eccentric eye positions also involve a torsional component, which according to Donder's law is fully determined by the two-dimensional (2D) eye position acquired.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!