Recent studies of human cancers and mutant mouse models have implicated the Nkx3.1 homeobox gene as having a key role in prostate carcinogenesis. Consistent with such a role, here we show that Nkx3.1 displays growth-suppressing activities in cell culture, and that aged Nkx3.1 mutant mice display histopathological defects resembling prostatic intraepithelial neoplasia (PIN), the presumed precursor of human prostate cancer. Using a tissue recombination approach, we found that PIN-like lesions from Nkx3.1 mutants can undergo progressively severe histopathological alterations after serial transplantation in nude mice. Our findings indicate that Nkx3.1 loss-of-function is a critical event in prostate cancer initiation, and that Nkx3.1 mutant mice accurately model early stages of prostate carcinogenesis. More generally, our tissue recombination assay provides an empirical test to examine the relationship of PIN to prostate carcinoma.
Download full-text PDF |
Source |
---|
Proc Natl Acad Sci U S A
January 2017
Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720;
To define a complete catalog of the genes that are activated during mouse sclerotome formation, we sequenced RNA from embryonic mouse tissue directed to form sclerotome in culture. In addition to well-known early markers of sclerotome, such as Pax1, Pax9, and the Bapx2/Nkx3-2 homolog Nkx3-1, the long-noncoding RNA PEAT (Pax1 enhancer antisense transcript) was induced in sclerotome-directed samples. Strikingly, PEAT is located just upstream of the Pax1 gene.
View Article and Find Full Text PDFNature
September 2009
Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
In epithelial tissues, the lineage relationship between normal progenitor cells and cell type(s) of origin for cancer has been poorly understood. Here we show that a known regulator of prostate epithelial differentiation, the homeobox gene Nkx3-1, marks a stem cell population that functions during prostate regeneration. Genetic lineage-marking demonstrates that rare luminal cells that express Nkx3-1 in the absence of testicular androgens (castration-resistant Nkx3-1-expressing cells, CARNs) are bipotential and can self-renew in vivo, and single-cell transplantation assays show that CARNs can reconstitute prostate ducts in renal grafts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!