The fluoresceinyl (Flu) group has been linked by an amide bond to the side chain amino group at position 8 of (a) two oxytocin (OT) antagonists, to give d(CH(2))(5)[Tyr(Me)(2),Thr(4),Orn(8)(5/6C-Flu),Tyr-NH(2)(9)]VT (Orn(8)(5/6C-Flu)OTA) (1) and desGly-NH(2),d(CH(2))(5)[D- Tyr(2),Thr(4),Orn(8)(5/6C-Flu)]VT (2), and (b) eight Lys(8) and Orn(8) analogues of potent OT agonists, to give d[Lys(8)(5/6C-Flu)]VT (3), d[Thr(4),Lys(8)(5/6C-Flu)]VT (4), [HO(1)][Lys(8)(5/6C-Flu)]VT (5), [HO(1)][Thr(4),Lys(8)(5/6C-Flu)]VT (6), d[Orn(8)(5/6C-Flu)]VT (7), d[Thr(4),Orn(8)(5/6C-Flu)]VT (8), [HO(1)][Orn(8)(5/6C-Flu)]VT (9), and [HO(1)][Thr(4),Orn(8)(5/6C-Flu)]VT (10). The tetramethylrhodamyl (Rhm) group was attached to the precursor peptide of 9 to give [HO(1)][Orn(8)(5/6C-Rhm)]VT (11). All 11 fluorescent peptides were evaluated in human OT and vasopressin V(1a) (vasoconstrictor), V(1b) (pituitary), and V(2) (antidiuretic) receptor binding and functional assays. With K(d) = 6.24, 217, >10000, and >10000 nM for the OT, V(1a), V(1b), and V(2) receptors, peptide 1 is a potent and selective fluorescent OT antagonist and may be useful for specifically labeling OT receptors while peptide 2 exhibits low affinities for all the receptors. The fluorescent peptides 3-10 are all very potent agonists for the human OT receptor. They exhibit the following K(d) values (nM) for the human OT, V(1a), V(1b), and V(2) receptors, respectively: (3) 0.29, 57, 124, >10000; (4) 1.8, 25.5, 150, >10000; (5) 0.34, 13.7, 66, nd (not determined); (6) 0.32, 17.3, 53, >10000; (7) 0.25, 107, 393, >10000; (8) 0.40, 30, 282, >10000; (9) 0.18, 12.2, 126, nd; (10) 0.17, 11.8, 87, >1000; (11) 0.092, 7.36, nd, nd. Peptide 7 exhibits both a high affinity and a high selectivity for human OT receptors. Peptides 7 and 11 were utilized to study the internalization of the OT receptor-ligand complex. Preliminary studies indicate that this process is similar to that observed for the vasopressin V(1a) receptor and differs from that observed for vasopressin V(2) receptors. Some or all of the fluorescent OT antagonists and agonists reported here are very promising new fluorescent ligands for labeling cells which express the human OT receptor and are also useful tools to follow endocytosis of the receptor-ligand complex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm010526+ | DOI Listing |
Mol Metab
December 2024
Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan. Electronic address:
Objectives: Arginine vasopressin (AVP), known as an antidiuretic hormone, is also crucial in metabolic homeostasis. Although AVP receptor-deficient mice exhibit various abnormalities in glucose and lipid metabolism, the mechanism underlying these symptoms remains unclear. This study aimed to explore the involvement of the gut hormones including glucagon-like peptide-1 (GLP-1) and microbiota as essential mediators.
View Article and Find Full Text PDFActa Pharm Sin B
September 2024
Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key Laboratory of Basic and Translational Research on Radiopharmaceuticals, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
Front Pharmacol
September 2024
Department of Anesthesiology, Intensive Care Medicine, Emergency Medicine, Vidia St. Vincentius-Clinic Karlsruhe gAG, Karlsruhe, Germany.
Background: The unique ability of the respiratory tract to protect the integrity of the airways by removing potentially harmful substances is defined as mucociliary clearance. This complex physiological mechanism protects the lower airways by ridding them of pollutants and pathogens. This study aimed to evaluate the potential influence of clinically relevant vasopressors on mucociliary clearance.
View Article and Find Full Text PDFNeuropsychopharmacology
September 2024
Neurobiology of Social Behavior Laboratory, Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI, USA.
Understanding the neural basis of social play in juvenile rats may ultimately help restore social play deficits in autistic children. We previously found that administration of a vasopressin (AVP) V1a receptor (V1aR) antagonist into the lateral septum (LS) increased social play behavior in male juvenile rats and decreased it in females. Here, we demonstrate that glutamate, but not GABA, is involved in this sex-specific regulation.
View Article and Find Full Text PDFCase Rep Gastroenterol
June 2024
Westmead Intensive Care Service, Westmead Hospital, Westmead, NSW, Australia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!