Novel selective PDE4 inhibitors. 3. In vivo antiinflammatory activity of a new series of N-substituted cis-tetra- and cis-hexahydrophthalazinones.

J Med Chem

Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Department of Pharmacochemistry, Vrije Universiteit, De Boelelaan 1085c, 1081 HV Amsterdam, The Netherlands.

Published: June 2002

The synthesis and biological activities of a series of N-substituted cis-4a,5,6,7,8,8a-hexa- and cis-4a,5,8,8a-tetrahydro-2H-phthalazin-1-ones are described. It was found that compounds bearing a cycloalkyl group at the 2-position exhibit the highest PDE4 inhibitory activities (pIC(50) = 8.6-9.4). The N-cycloheptyl- and N-adamantanyltetrahydrophthalazinones (7h, 8, 10, 11) show high in vivo antiinflammatory activities after oral application. Additionally, some phthalazinones were found to exhibit potent suppression of LPS-induced TNFalpha release and show moderate potency against fMLP-stimulated production of ROS.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm0110340DOI Listing

Publication Analysis

Top Keywords

vivo antiinflammatory
8
series n-substituted
8
novel selective
4
selective pde4
4
pde4 inhibitors
4
inhibitors vivo
4
antiinflammatory activity
4
activity series
4
n-substituted cis-tetra-
4
cis-tetra- cis-hexahydrophthalazinones
4

Similar Publications

Among the various sources of selenium supplementations, the Se-methylselenocysteine (SeMC) is a natural organic selenium compound that has been demonstrated to have multiple advantages in terms of metabolism efficiency and biosafety in animals. Nevertheless, the genome-wide impact of SeMC on gene transcription remains to be elucidated. In this study, we employed an LPS-stimulated chicken HD11 macrophage-like cell model to identify the principal transcription factors involved in transcriptome regulation responsible for SeMC treatment.

View Article and Find Full Text PDF

Micro-Electro Nanofibrous Dressings Based on PVDF-AgNPs as Wound Healing Materials to Promote Healing in Active Areas.

Int J Nanomedicine

January 2025

Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.

Purpose: The purpose of this study is to develop an innovative solution for chronic wounds in high-mobility areas, such as joints, where conventional treatments are hindered by passive healing mechanisms and the need for immobilization. By designing a micro-electro-Nanofiber dressing composed of piezoelectric polyvinylidene fluoride (PVDF) integrated with antimicrobial silver nanoparticles (AgNPs), this research aims to address the dual challenges of promoting effective wound healing and maintaining joint mobility.

Methods: Herein, we developed a novel micro-electro-Nanofiber dressing using electrospinning technology, incorporating polyvinylidene fluoride (PVDF) with silver nanoparticles (AgNPs).

View Article and Find Full Text PDF

Injectable microspheres filled with copper-containing bioactive glass improve articular cartilage healing by regulating inflammation and recruiting stem cells.

Regen Biomater

December 2024

Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, P. R. China.

Osteoarthritis (OA) is a frequent chronic illness in orthopedics that poses a major hazard to patient health. cell therapy is emerging as a therapeutic option, but its efficacy is influenced by both the inflammatory milieu and the amount of stem cells, limiting its use. In this study, we designed a novel injectable porous microsphere (PM) based on microfluidic technology that can support mesenchymal stem cells (MSCs) therapy by combining polylactic-glycolic acid copolymer, kartogenin, polydopamine, stromal cell-derived factor-1, and copper-doped bioactive glass (CuBG).

View Article and Find Full Text PDF

CD4-Derived Double-Negative T Cells Ameliorate Alzheimer's Disease-Like Phenotypes in the 5×FAD Mouse Model.

CNS Neurosci Ther

January 2025

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

Background: Alzheimer's disease (AD) is a debilitating neurodegenerative disorder that is difficult to predict and is typically diagnosed only after symptoms manifest. Recently, CD4 T cell-derived double-negative T (DNT) cells have shown strong immuno-regulatory properties in both in vitro and in vivo neuronal inflammation studies. However, the effectiveness of DNT cells in treating on AD are not yet fully understood.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) is a most common chronic disease with a rapid growing incidence worldwide, presenting as an ever-increasing burden to the healthcare system. In this study, we explored that Cremastraappendiculata, a valuable traditional medicine in China, could alleviate lipid accumulation in HepG2 cells. Polysaccharide (CAP) was extracted from the pseudobulbs of C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!