To resolve a candidate chromosome region on the middle part of bovine chromosome 6 (BTA6) containing several different quantitative trait locus (QTL) intervals, we constructed a high-resolution, integrated, comprehensive, and comparative map using a 12,000-rad, whole-genome, cattle-hamster radiation hybrid (RH) panel. The RH map includes a total of 71 loci either selected from bovine and comparative maps or targeted directly from a microdissection library specific for the BTA6 region. All loci typed were placed in one linkage group at a lod score threshold of 4.0. The length of the comprehensive RH map, which is the first high-resolution RH map in cattle, spans 2568.8 cR(12,000). The order of markers obtained principally agrees with the order on published bovine genetic maps. Our RH map integrates markers as well as genes and ESTs available from several physical and genetic maps of BTA6 and the orthologous ovine chromosome 6, human chromosome 4, and mouse chromosomes 5/3. Comparative analysis confirms and refines current knowledge about conservation and rearrangements in corresponding chromosomal regions on BTA6. We identified and localized two new breakpoints for intrachromosomal rearrangements between human chromosome 4 and BTA6. This RH map is a powerful tool in all aspects of genetic, physical, transcript, and comparative mapping. Due to its links to the gene-dense maps of human and mouse, it can serve as a prerequisite to identify possible candidate genes for quantitative trait loci localized in the targeted BTA6 region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/geno.2002.6778 | DOI Listing |
Cell Rep
January 2025
Molecular Immunology, Justus-Liebig-University Giessen, 35392 Giessen, Germany. Electronic address:
Control of cell proliferation is critical for the lymphocyte life cycle. However, little is known about how stage-specific alterations in cell cycle behavior drive proliferation dynamics during T cell development. Here, we employed in vivo dual-nucleoside pulse labeling combined with the determination of DNA replication over time as well as fluorescent ubiquitination-based cell cycle indicator mice to establish a quantitative high-resolution map of cell cycle kinetics of thymocytes.
View Article and Find Full Text PDFSci Rep
January 2025
Civil and Environmental Engineering Department, Khalifa University, Abu Dhabi, UAE.
Estimating spatiotemporal maps of greenhouse gases (GHGs) is important for understanding climate change and developing mitigation strategies. However, current methods face challenges, including the coarse resolution of numerical models, and gaps in satellite data, making it essential to improve the spatiotemporal estimation of GHGs. This study aims to develop an advanced technique to produce high-fidelity (1 km) maps of CO and CH over the Arabian Peninsula, a highly vulnerable region to climate change.
View Article and Find Full Text PDFMed Biol Eng Comput
January 2025
Department of Computer Science and Engineering, Shri Shankaracharya Institute of Professional Management and Technology, Raipur, (C.G.), India.
This study presents an advanced methodology for 3D heart reconstruction using a combination of deep learning models and computational techniques, addressing critical challenges in cardiac modeling and segmentation. A multi-dataset approach was employed, including data from the UK Biobank, MICCAI Multi-Modality Whole Heart Segmentation (MM-WHS) challenge, and clinical datasets of congenital heart disease. Preprocessing steps involved segmentation, intensity normalization, and mesh generation, while the reconstruction was performed using a blend of statistical shape modeling (SSM), graph convolutional networks (GCNs), and progressive GANs.
View Article and Find Full Text PDFThe increasing availability of coarse-scale climate simulations and the need for ready-to-use high-resolution variables drive the climate community to the challenge of reducing computational resources and time for downscaling purposes. To this end, statistical downscaling is gaining interest as a potential strategy for integrating high-resolution climate information obtained through dynamical downscaling over limited years, providing a clear understanding of the gains and losses in combining dynamical and statistical downscaling. In this regard, several questions can be raised: (i) what is the performance of statistical downscaling, assuming dynamical downscaling as a reference over a shared time window; (ii) how much the performance of statistical downscaling is affected by changes in the number of years available for training; (iii) how does the climate normal considered for the training affect the predictions.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, Delhi, India, 110016. Electronic address:
The establishment of site-specific target limits (SSTLs) for old municipal solid waste (MSW) dumpsites is essential for defining remediation goals in a scientifically rigorous manner. However, a standardized framework for achieving this is currently lacking. This study proposes a comprehensive framework that integrates high-resolution site characterization (HRSC) tools, targeted sampling, and contaminant transport modeling to derive SSTLs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!