At liver magnetic resonance (MR) imaging in 38 patients, a breath-hold T2-weighted fast spin-echo (SE) pulse sequence optimized with fast recovery was compared with a conventional respiratory-triggered fast SE sequence and a breath-hold single-shot fast SE sequence. Mean signal-to-noise ratios for liver and contrast-to-noise ratios for hepatic lesions were higher with the breath-hold fast-recovery fast SE sequence than with the respiratory-triggered fast SE sequence (P <.05). Breath-hold fast-recovery images displayed better lesion clarity than did single-shot fast SE images (P <.05) and fewer image artifacts than did respiratory-triggered fast SE images (P <.05). The ability to determine lesion size and the overall image quality was best with the breath-hold fast-recovery sequence (P <.05). These results may justify use of the breath-hold fast-recovery fast SE pulse sequence for first-line T2-weighted MR imaging of the liver.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1148/radiol.2233011011 | DOI Listing |
Medicine (Baltimore)
November 2024
Department of Gastroenterology, The First Affiliated hospital of Harbin Medical University, Harbin, Heilongjiang, China.
Liver cirrhosis is a chronic disease caused by long-term inflammation and fibrosis of the liver. Early identification and intervention in liver cirrhosis have become an important goal for researchers to explore the influence of some metabolic factors on the risk of liver cirrhosis in terms of genetic susceptibility. Data from genome-wide association studies (GWASs) of fourteen metabolic factors and liver cirrhosis were obtained from publicly available databases.
View Article and Find Full Text PDFBackground: Viral gastroenteritis is a significant global health concern. An effective, rapid, and easy-to-use diagnostic tool is essential for screening causative viruses.
Methods: Forty-eight samples, known to be infected with one of the following viruses: norovirus, group A rotavirus, astrovirus, adenovirus, and sapovirus determined by reverse transcription-PCR and nucleotide sequencing, were evaluated by the Fast Track Diagnostics (FTD) viral gastroenteritis assay.
Bioinformatics
January 2025
School of Artificial Intelligence, Jilin University, Jilin, China.
Motivation: Predicting RNA-binding proteins (RBPs) is central to understanding post-transcriptional regulatory mechanisms. Here, we introduce EnrichRBP, an automated and interpretable computational platform specifically designed for the comprehensive analysis of RBP interactions with RNA.
Results: EnrichRBP is a web service that enables researchers to develop original deep learning and machine learning architectures to explore the complex dynamics of RNA-binding proteins.
J Phys Chem B
January 2025
Institute of Quantitative Biology, College of Life Sciences, and School of Physics, Zhejiang University, Hangzhou, Zhejiang 310058, China.
The emergence of nanopores in two-dimensional (2D) nanomaterials offers an attractive solid-state platform for high-throughput and low-cost DNA sequencing. However, several challenges remain to be addressed before their wide application, including the too-fast DNA translocation speed (compared to state-of-the-art single nucleoside detection techniques) and too large noise/signal ratios due to DNA fluctuations inside the nanopores. Here, we use molecular dynamics (MD) simulations to demonstrate the feasibility of utilizing RNA-DNA interactions in modulating DNA translocations in 2D MoS nanopores.
View Article and Find Full Text PDFJ Diabetes Investig
January 2025
Department of Medical Sciences, Shahid Beheshti University, Tehran, Iran.
Aims: This study aimed to delineate the effect of hyperglycemia on the Alu/LINE-1 hypomethylation and in ERK1/2 genes expression in type 2 diabetes with and without cataract.
Methods: This study included 58 diabetic patients without cataracts, 50 diabetic patients with cataracts, and 36 healthy controls. After DNA extraction and bisulfite treatment, LINE-1 and Alu methylation levels were assessed using Real-time MSP.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!