Among the early responses of Lycopersicon peruvianum suspension-cultured cells to the polypeptide wound signal systemin are the alkalinization of the culture medium and the activation of a 48-kDa mitogen-activated protein kinase (MAPK). Here, we report that both responses are induced in the cells by exposure to ultraviolet-B (UV-B) radiation. Suramin, an inhibitor of systemin receptor function, strongly inhibited the UV-B-induced medium alkalinization and MAPK activity. The UV-B response was also reduced when cells were initially treated with systemin or the systemin antagonist Ala-17-systemin, which competitively inhibits binding of systemin to the systemin receptor. Cells that were initially treated with either UV-B or systemin exhibited a strongly reduced response to a subsequent elicitation with systemin. The desensitization was transient, reaching a maximum at 30-60 min after the initial treatment. Several hours later, depending on the initial UV-B dose or systemin concentration, the cells regained their initial responsiveness. When cells were irradiated with low doses of UV-B and subsequently treated with systemin, the UV-B response reached levels higher than the response without UV-B treatment. The data provide evidence for an involvement of the systemin receptor and/or systemin-responsive signaling elements in the UV-B response.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M203844200DOI Listing

Publication Analysis

Top Keywords

systemin
12
systemin receptor
12
uv-b response
12
lycopersicon peruvianum
8
peruvianum suspension-cultured
8
suspension-cultured cells
8
uv-b
8
cells initially
8
initially treated
8
treated systemin
8

Similar Publications

Antagonistic systemin receptors integrate the activation and attenuation of systemic wound signaling in tomato.

Dev Cell

November 2024

Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China. Electronic address:

Pattern recognition receptor (PRR)-mediated perception of damage-associated molecular patterns (DAMPs) triggers the first line of inducible defenses in both plants and animals. Compared with animals, plants are sessile and regularly encounter physical damage by biotic and abiotic factors. A longstanding problem concerns how plants achieve a balance between wound defense response and normal growth, avoiding overcommitment to catastrophic defense.

View Article and Find Full Text PDF

Transcriptional Modulation of Plant Defense Genes by a Bipartite Begomovirus Promotes the Performance of Its Whitefly Vector.

Viruses

October 2024

Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.

The majority of plant viruses rely on insect vectors for inter-plant transmission. Amid virus transmission, vector-borne viruses such as begomoviruses may significantly modulate host plants in various ways and, in turn, plant palatability to insect vectors. While many case studies on monopartite begomoviruses are available, bipartite begomoviruses are understudied.

View Article and Find Full Text PDF
Article Synopsis
  • Small secreted peptides (SSPs) play a crucial role in plant defense by acting as danger signals in response to microbial threats; however, not many SSP families are identified in the Solanaceae family due to outdated discovery methods.
  • This study introduces a new SSP family called SolP, identified through comparative genomics in important crops like tomato, tobacco, and pepper, indicating its role in initiating the plant's immune response.
  • The specific peptide SlSolP12, which has the same sequence across these plants, triggers various defense mechanisms and boosts overall resistance to infection, showing effectiveness in a range of plant species.
View Article and Find Full Text PDF

Peps are endogenous damage-associated polypeptides that evoke defense responses in plants. Like other damage-associated molecular patterns, Pep signals are transduced by receptors. PEPRs are the receptors that transduce Pep danger signals.

View Article and Find Full Text PDF

Systemin, the first peptide hormone identified in plants, was initially isolated from tomato (Solanum lycopersicum) leaves. Systemin mediates local and systemic wound-induced defense responses in plants, conferring resistance to necrotrophic fungi and herbivorous insects. Systemin is recognized by the leucine-rich-repeat receptor-like kinase (LRR-RLK) receptor SYSTEMIN RECEPTOR1 (SYR1), but how the systemin recognition signal is transduced to intracellular signaling pathways to trigger defense responses is poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!