Previously, phytanoyl-CoA alpha-hydroxylase-associated protein 1 (PAHX-AP1) was isolated as a novel neuron-specific protein to interact with Refsum disease (RfD) gene PAHX. Its expression in the brain increased after eyelid opening, and the elevated level was maintained through adulthood. In this report, to verify the hypothesis that light could trigger this increase, we have examined the developmental distribution pattern of PAHX-AP1 in rat retina and visual cortex, and changes of its expression by binocular deprivation. Northern blot analyses demonstrated PAHX-AP1 expression reached its highest level in the visual cortex and eyeball at 4 weeks after birth, and these levels were maintained through adult life. Two weeks after visual deprivation, its expression in the eyeball and visual cortex decreased compared with the control. In situ hybridization analyses of the retina showed that PAHX-AP1 expression was limited to the ganglionic cell layer at 10 days after birth, but expressed in the inner nuclear cell layer and extended to the outer nuclear cell layer at 2 and 3 weeks after birth, respectively. Two weeks after visual deprivation, however, it decreased in the ganglionic and inner nuclear cell layer, and disappeared in the rod and cone cell layers. In the visual cortex, strong signals of PAHX-AP1 were detected in layers IV and VI, and II-VI at 10 days and 2 weeks after birth, respectively. Its expression decreased after 2 weeks of visual deprivation. These results indicate that visual stimulation is essential for the maintenance of PAHX-AP1 expressions in the retina, especially in the rod and cone cell layers, and visual cortex, and suggest that PAHX-AP1 may be involved in the developmental regulation of the photoreceptor's function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0736-5748(02)00017-5 | DOI Listing |
Over the past two decades, rapid advancements in magnetic resonance technology have significantly enhanced the imaging resolution of functional Magnetic Resonance Imaging (fMRI), far surpassing its initial capabilities. Beyond mapping brain functional architecture at unprecedented scales, high-spatial-resolution acquisitions have also inspired and enabled several novel analytical strategies that can potentially improve the sensitivity and neuronal specificity of fMRI. With small voxels, one can sample from different levels of the vascular hierarchy within the cerebral cortex and resolve the temporal progression of hemodynamic changes from parenchymal to pial vessels.
View Article and Find Full Text PDFUnlabelled: While visual working memory (WM) is strongly associated with reductions in occipitoparietal 8-12 Hz alpha power, the role of 4-7 Hz frontal midline theta power is less clear, with both increases and decreases widely reported. Here, we test the hypothesis that this theta paradox can be explained by non-oscillatory, aperiodic neural activity dynamics. Because traditional time-frequency analyses of electroencephalopgraphy (EEG) data conflate oscillations and aperiodic activity, event-related changes in aperiodic activity can manifest as task-related changes in apparent oscillations, even when none are present.
View Article and Find Full Text PDFRecent work has claimed that most apparently cross-modal responses in sensory cortex are instead caused by the face movements evoked by stimuli of the non-dominant modality. We show that visual stimuli rarely trigger face movements in awake mice; when they occur, such movements do not explain visual responses in auditory cortex; and in simultaneous recordings, face movements drove artifactual cross-modal responses in visual but not auditory cortex. Thus face movements do not broadly explain cross-modal activity across all stimulus modalities.
View Article and Find Full Text PDFSparse coding enables cortical populations to represent sensory inputs efficiently, yet its temporal dynamics remain poorly understood. Consistent with theoretical predictions, we show that stimulus onset triggers broad cortical activation, initially reducing sparseness and increasing mutual information. Subsequently, competitive interactions sustain mutual information as activity declines and sparseness increases.
View Article and Find Full Text PDFUnlabelled: Evaluating tissue microstructure and membrane integrity in the living human brain through diffusion-water exchange imaging is challenging due to requirements for a high signal-to-noise ratio and short diffusion times dictated by relatively fast exchange processes. The goal of this work was to demonstrate the feasibility of imaging of tissue micro-geometries and water exchange within the brain gray matter using the state-of-the-art Connectome 2.0 scanner equipped with an ultra-high-performance gradient system (maximum gradient strength=500 mT/m, maximum slew rate=600 T/m/s).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!