Foam cells found in atherosclerotic lesions are believed to derive from macrophages that take up aggregated low-density lipoprotein (LDL) particles bound to the extracellular matrix of arterial walls. C-reactive protein (CRP) is an acute-phase protein found in atherosclerotic lesions, which when immobilized on a solid phase, can bind and cluster LDL particles in a calcium-dependent manner. In the present study, we examined whether CRP-bound aggregated LDL could be taken up by macrophages in culture. CRP molecules were aggregated in the presence of calcium and immobilized on the surface of polystyrene microtitre wells. Human LDL added to the wells bound to and aggregated on the immobilized CRP, also in a calcium-dependent manner. On incubation with macrophages, the immobilized CRP-bound LDL aggregates were readily taken up by the cells, as demonstrated by immunofluorescence microscopy, by the cellular accumulation of cholesterol and by the overexpression of adipophilin. Immunofluorescence microscopy and flow-cytometry analysis established that the uptake of the LDL-CRP complex was not mediated by the CRP receptor CD32. These observations with immobilized CRP and LDL, approximating the conditions that exist in the extracellular matrix of the arterial wall, thus suggest that CRP may contribute to the formation of foam cells in atherosclerotic lesions by causing the aggregation of LDL molecules that are then taken up by macrophages through a CD32-independent pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1222776 | PMC |
http://dx.doi.org/10.1042/BJ20020045 | DOI Listing |
Life Sci
January 2025
Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. Electronic address:
The dysfunction of the endothelial lining in lesion-prone areas of the arterial vasculature significantly contributes to the pathobiology of atherosclerotic cardiovascular disease. Recent studies suggested that UDP-glucose pyrophosphorylase 2 (UGP2) plays a role in cell proliferation and survival. This study investigates the anti-apoptotic and anti-atherogenic effects of UGP2 both in vitro and in vivo.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Laboratory of Angiopathology Institute of General Pathology and Pathophysiology, 8, Baltiiskaya Street, 125315, Moscow, Russia.
This review discusses the possibility of inheritance of some diseases through mutations in mitochondrial DNA. These are examples of many mitochondrial diseases that can be caused by mutations in mitochondrial DNA. Symptoms and severity can vary widely depending on the specific mutation and affected tissues.
View Article and Find Full Text PDFOrphanet J Rare Dis
January 2025
Department of Critical Liver Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
Background: Homozygous familial hypercholesterolaemia (HoFH) increases risk of premature cardiovascular events and cardiac death. In severe cases of HoFH, clinical signs and symptoms cannot be controlled well by non-surgical treatments, liver transplantation (LT) currently represents the viable option.
Method: To assess the clinical efficacy, prognosis, and optimal timing of LT for HoFH, a retrospective analysis was conducted on the preoperative, surgical conditions, and postoperative follow-up of children who received an LT for HoFH at the Beijing Friendship Hospital over the period from December 2014 to August 2022.
Sci Rep
January 2025
Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Bile acids (BAs) play important roles in the context of lipid homeostasis and inflammation. Based on extensive preclinical mouse studies, BA signaling pathways have been implicated as therapeutic targets for cardiovascular diseases. However, differences in BA metabolism between mice and humans hamper translation of preclinical outcomes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Cardiology, Second Norman Bethune Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, China.
Atherosclerosis (AS) is the principal pathological cause of atherosclerotic cardiovascular diseases. Chronic endoplasmic reticulum stress (ERS) has been implicated in AS aetiopathogenesis, but the underlying molecular interactions remain unclear. This study aims to identify the molecular mechanisms of ERS in AS pathogenesis to inform innovative diagnostic approaches and therapeutic targets for managing AS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!