A new Ru(II) complex is described which serves as a luminescence lifetime-based sensor for fluoride and cyanide anions (KF = 640 000 mol-1, KCN = 430 000 mol-1). This chromophore displays observable changes in its UV-vis and steady-state luminescence spectra upon cyanide binding. Prior to cyanide addition, this complex exhibits a single-exponential lifetime (tau = 377 +/- 20 ns). With increasing cyanide concentrations, the intensity decays are composed of two exponentials: long tau (320-370 ns) and short tau (13-17 ns). The average lifetimes shorten as a function of cyanide concentration since the fractional intensity shifts from an initial dominant long lifetime component to the short lifetime component. This work represents the first example of a direct method for the luminescence lifetime-based sensing of anions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja0259180 | DOI Listing |
ACS Sens
January 2025
Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, New York 13676, United States.
Chloride is the most abundant anion in cells and plays many critical roles in maintaining cellular homeostasis. However, current chloride indicators are rare with inherent sensitivity in their emission properties, such as vulnerability to pH changes or short emission lifetimes. These limitations restrict their application in aqueous media and imaging.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Chemical Optosensors & Applied Photochemistry Group (GSOLFA), Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
Water conductivity sensing relies universally on electrical measurements, which are subject to corrosion of the electrodes and subsequent signal drift in prolonged in situ uses. Furthermore, they cannot provide contactless sensing or remote readout. To this end, a novel device for water conductivity monitoring has been developed by employing a microenvironment-sensitive ruthenium complex, [Ru(2,2'-bipyridine-4,4'-disulfonato)], embedded into a quaternary ammonium functionalized cross-linked polymer support.
View Article and Find Full Text PDFNano Lett
January 2025
Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.
Lanthanide-doped fluoride nanocrystals have emerged as promising tools in biomedicine, yet their applications are still limited by their low luminescence efficiency. Herein, we developed highly efficient lithium-based core-shell-shell (CSS) nanoprobes (NPs) featuring a rhombic active domain and a spherical inert protective shell. By introducing Yb as an energy transfer bridge and optimizing the CSS design, a remarkable 1643-fold enhancement in visible emission and a 33-fold increase in NIR emission are achieved compared to original nanoparticles.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
Int J Mol Sci
November 2024
A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
The calcium cation is a crucial signaling molecule involved in numerous cellular pathways. Beyond its role as a messenger or modulator in intracellular cascades, calcium's function in excitable cells, including nerve impulse transmission, is remarkable. The central role of calcium in nervous activity has driven the rapid development of fluorescent techniques for monitoring this cation in living cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!