Current strategies for cell-based screening generally focus on the development of highly specific assays, which require an understanding of the nature of the signaling molecules and cellular pathways involved. In contrast, changes in temperature of cells provides a measure of altered cellular metabolism that is not stimulus specific and hence could have widespread applications in cell-based screening of receptor agonists and antagonists, as well as in the assessment of toxicity of new lead compounds. Consequently, we have developed a micromachined nanocalorimetric biological sensor using a small number of isolated living cells integrated within a subnanoliter format, which is capable of detecting 13 nW of generated power from the cells, upon exposure to a chemical or pharmaceutical stimulus. The sensor comprises a 10-junction gold and nickel thermopile, integrated on a silicon chip which was back-etched to span a 800-nm-thick membrane of silicon nitride. The thin-film membrane, which supported the sensing junctions of the thermoelectric transducer, gave the system a temperature resolution of 0.125 mK, a low heat capacity of 1.2 nJ mK(-1), and a rapid (unfiltered) response time of 12 ms. The application of the system in ultra-low-volume cell-based assays could provide a rapid endogenous screen. It offers important additional advantages over existing methods in that it is generic in nature, it does not require the use of recombinant cell lines or of detailed assay development, and finally, it can enable the use of primary cell lines or tissue biopsies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac011028bDOI Listing

Publication Analysis

Top Keywords

micromachined nanocalorimetric
8
ultra-low-volume cell-based
8
cell-based assays
8
cell-based screening
8
cell lines
8
nanocalorimetric sensor
4
sensor ultra-low-volume
4
cell-based
4
assays current
4
current strategies
4

Similar Publications

A suspended membrane nanocalorimeter for ultralow volume bioanalysis.

IEEE Trans Nanobioscience

March 2002

Department of Human Anatomy and Cell Biology, University of Liverpool, New Medical School, L69 3LT Liverpool, UK.

A nanocalorimetric suspended membrane sensor for pL volumes of aqueous media was fabricated by bulk silicon micromachining using anisotropic wet etching and photo and electron beam lithographic techniques. A high-temperature sensitivity of 125 microK and a rapid unfiltered time constant of 12 ms have been achieved by integrating a miniaturized reaction vessel of 0.7-nL volume on a 800-nm-thick and 300 x 300- microm2-large silicon nitride membrane, thermally insulated from the surrounding bulk silicon.

View Article and Find Full Text PDF

Current strategies for cell-based screening generally focus on the development of highly specific assays, which require an understanding of the nature of the signaling molecules and cellular pathways involved. In contrast, changes in temperature of cells provides a measure of altered cellular metabolism that is not stimulus specific and hence could have widespread applications in cell-based screening of receptor agonists and antagonists, as well as in the assessment of toxicity of new lead compounds. Consequently, we have developed a micromachined nanocalorimetric biological sensor using a small number of isolated living cells integrated within a subnanoliter format, which is capable of detecting 13 nW of generated power from the cells, upon exposure to a chemical or pharmaceutical stimulus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!