Uncoupling protein 1 (UCP1) is uniquely expressed in brown adipose tissue (BAT) and generates heat by uncoupling respiration from ATP synthesis. A defect in BAT thermogenesis has been described in different models of rodent obesity. In humans, the implication of BAT in energy expenditure is still under discussion. A BclI polymorphism associated with fat gain over time has been described in the upstream region of the human UCP1 (hUCP1) gene. In this study, a new polymorphic site linked to the BclI site is described which results in a C to A point mutation, 89 bp downstream of the BclI site, ie at position -3737 bp. This site is located in the recently analysed regulatory region of the hUCP1 gene. The mutation disrupts a consensus site for the binding of ATF/CREB transcription factor family and inhibits the factor binding in vitro. However, transient transfection of a rodent brown adipocyte cell line shows that the isoproterenol (ISO) stimulation of the hUCP1 gene transcription is not significantly affected by this mutation. However, we postulate that the C/A substitution, in human, may contribute to a minor defect in the regulation of hUCP1 transcription and that would explain fat gain over time.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.ijo.0801973DOI Listing

Publication Analysis

Top Keywords

hucp1 gene
12
polymorphic site
8
site located
8
human ucp1
8
fat gain
8
gain time
8
bcli site
8
site
5
located human
4
gene
4

Similar Publications

Uncoupling proteins 1 (UCP1) and 2 (UCP2) belong to the family of mitochondrial anion transporters and share 59% sequence identity with each other. Whereas UCP1 was shown to be responsible for the rapid production of heat in brown adipose tissue, the primary function and transport properties of ubiquitously expressed UCP2 are controversially discussed. Here, for the first time, the activation pattern of the recombinant human UCP2 in comparison to the recombinant human UCP1 are studied using a well-defined system of planar lipid bilayers.

View Article and Find Full Text PDF

Uncoupling protein 1 (UCP1) is uniquely expressed in brown adipose tissue (BAT) and generates heat by uncoupling respiration from ATP synthesis. A defect in BAT thermogenesis has been described in different models of rodent obesity. In humans, the implication of BAT in energy expenditure is still under discussion.

View Article and Find Full Text PDF

Structural organization and mutational analysis of the human uncoupling protein-2 (hUCP2) gene.

Life Sci

March 1999

Laboratory of Molecular Neurogenetics, Center for Psychobiological and Psychosomatic Research (FPP), University of Trier, Germany.

Uncoupling proteins (UCPs) are mitochondrial membrane transporters which are involved in dissipating the proton electrochemical gradient thereby releasing stored energy as heat. This implies a major role of UCPs in energy metabolism and thermogenesis which when deregulated are key risk factors for the development of obesity and other eating disorders. From the three different human UCPs identified so far by gene cloning both UCP2 and UCP3 were mapped in close proximity (75-150 kb) to regions of human chromosome 11 (11q13) that have been linked to obesity and hyperinsulinaemia.

View Article and Find Full Text PDF

Uncoupling proteins (UCPs) are inner mitochondrial membrane transporters which dissipate the proton gradient, releasing stored energy as heat. UCP1 is expressed exclusively in brown adipocytes while UCP2 is expressed widely. We now report the molecular cloning of a third uncoupling protein homologue, designated UCP3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!