Goodpasture's syndrome (GPS) is an autoimmune disease characterized by pulmonary hemorrhage, glomerulonephritis and anti-glomerular basement membrane (GBM) antibodies. The alpha(3) noncollagenous domain (NC1) of type IV collagen [alpha(3)(IV)] is the pathogen. The disease is T-cell-dependent; thus linear peptides initiate the autoimmune process. Studies in a rat model of GPS, experimental autoimmune glomerulonephritis (EAG), have shown that the carboxy-terminal 36 amino acids (purportedly the pathogenic epitope) are not responsible for disease induction. More recent studies implicate the amino terminus of alpha(3)(IV)NC1. Finding the nephritogenic epitope(s) is crucial in the understanding of the disease and for treatment. Because alpha(3)(IV)NC1 contains the antigens that induce GN in rats and human beings, we hypothesized that regions of the alpha(3)(IV)NC1 other than the carboxy terminus were responsible for disease. We investigated overlapping peptides spanning the entire NC1 domain of the alpha(3)(IV) chain N-terminal to the 36-mer (Goodpasture epitope) using the EAG rat model. Most peptides elicited antibody responses exclusively to themselves but not to native GBM. T-cells from GBM-immunized rats proliferated in vitro after stimulation with peptides 6, 8, 14, and 15, 24-mer and 23-mer. Fifteen percent of peptide 8 and peptide 14 rats had mild glomerulonephritis. In none of the animals immunized with other peptides did glomerulonephritis develop. These data suggest that conformation-dependent sites, posttranslational modification, multiple epitopes, concomitant antibody formation, or other disturbances are important in the ability of alpha(3)(IV)NC1 to induce EAG in rats and may also be important in the induction of GPS in human beings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1067/mlc.2002.123623 | DOI Listing |
BMC Ophthalmol
January 2025
Department of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Itabashi, Tokyo, Japan.
Background: Descemet's membrane endothelial keratoplasty (DMEK) is a highly effective procedure for corneal endothelial dysfunction; however, once a DMEK graft is deployed, repositioning can be challenging. Therefore, this study aimed to evaluate the efficacy of a technique that utilizes infusion and small air bubbles to reposition a misaligned deployed graft.
Methods: This retrospective interventional case series enrolled patients who underwent DMEK between January 2022 and July 2023, including cases where the DMEK graft was attached and unfolded in off-center positions".
Inflammation
January 2025
Department of Nephrology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu, 233000, Anhui Province, China.
Primary membranous nephropathy (PMN) is a prevalent renal disorder characterized by immune-mediated damage to the glomerular basement membrane, with recent studies highlighting the significant role of pyroptosis in its progression. In this study, we investigate the molecular mechanisms underlying PMN, focusing on the role of Tumor necrosis factor receptor-associated factor 6 (TRAF6) in promoting disease advancement. Specifically, we examine how TRAF6 facilitates PMN progression by inducing the ubiquitination of Transforming growth factor-beta-activated kinase 1 (TAK1), which in turn activates the Gasdermin D (GSDMD)/Caspase-1 axis, leading to podocyte pyroptosis.
View Article and Find Full Text PDFJ Tissue Eng
January 2025
Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Mural cells are essential for maintaining the proper functions of microvasculatures. However, a key challenge of microvascular tissue engineering is identifying a cellular source for mural cells. We showed that , circulating fibrocytes (CFs) can (1) shear and stabilize the microvasculatures formed by vascular endothelial cells (VECs) in a collagen gel, (2) form gap junctions with VECs and (3) induce basement membrane formation.
View Article and Find Full Text PDFInt Ophthalmol
January 2025
Department of Ophthalmology, Central Theater General Hospital, 627 Wuluo Road, Wuhan, 430070, China.
Purpose: The purpose is to evaluate the effect of drainage from intentional extramacular holes after internal limiting membrane insertion to treat macular hole retinal detachment (MHRD) in highly myopic eyes.
Methods: This study is a retrospective, observational, and comparative case series that included 25 consecutive highly myopic eyes with MHRD. All eyes underwent standard 23-gauge vitrectomy, inverted internal limiting membrane insertion into the macular hole, subretinal fluid drainage from an intentionally created extramacular retinal hole, and tamponade with either silicone oil (SO group, n = 13) or perfluoropropane (CF group, n = 12).
Biochem Biophys Res Commun
January 2025
Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:
The glomerular filtration barrier (GFB) has a unique spatial structure, including porous capillary endothelial cells, glomerular basal membrane (GBM) and highly specialized podocytes. This special structure is essential for the hemofiltration process of nephrons. GBM is the central meshwork structure of GFB formed by the assembly and fusion of various extracellular matrix (ECM) macromolecules, such as laminins and collagens, which undergo isoform transformation and maturation that may require precise regulation by metalloproteinases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!