Unlabelled: IV prostaglandin E1 improves clinical symptoms in patients with spinal canal stenosis. In the present study, we assessed the effects of OP-1206 alpha-CD, an orally active prostaglandin E1 analog, on walking dysfunction in the rat neuropathic intermittent claudication model. To induce spinal stenosis, two pieces of silicon rubber were placed in the lumbar (L4-6) epidural space in rats. Postsurgical walking function was measured using a treadmill apparatus. Spinal cord blood flow (SCBF) and skin blood flow (SKBF) were measured using a laser-Doppler flowmeter. OP-1206 alpha-CD was administered orally bid for 11 days from postoperative Day 3. In Control nontreated rats, a significant walking dysfunction was observed from Day 1 after the induction of spinal stenosis and persisted for 14 days when compared with the Sham-Operated group. On postoperative Day 15, SCBF revealed a significant reduction in the territory of spinal stenosis, although SKBF was not affected. OP-1206 alpha-CD significantly improved walking dysfunction on postoperative Days 5 (300 microg/kg), 7 (150 and 300 microg/kg), and 14 (150 and 300 microg/kg) when compared with the Vehicle-Treated group. On postoperative Day 15, the decrease in SCBF was significantly (150 and 300 microg/kg) improved by OP-1206 alpha-CD treatment, albeit SKBF remained unaffected. These data show that oral treatment with OP-1206 alpha-CD is effective in improving walking dysfunction induced by spinal canal stenosis, and this therapeutic effect is likely mediated by improved SCBF at the territory of spinal stenosis.

Implications: Intermittent motor dysfunction is a clinical symptom associated with partial spinal compression. The present study provides evidence that oral treatment with the prostaglandin E1 analog (OP-1206 alpha-CD) is effective in improving motor dysfunction and spinal cord blood flow in rats with spinal compression.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00000539-200206000-00030DOI Listing

Publication Analysis

Top Keywords

op-1206 alpha-cd
28
walking dysfunction
20
300 microg/kg
16
spinal stenosis
12
blood flow
12
postoperative day
12
150 300
12
spinal
10
effects op-1206
8
dysfunction rat
8

Similar Publications

Extracellular signal-regulated protein kinase (ERK) is a mitogen-activated protein kinase (MAPK) that mediates several cellular responses to mitogenic and differentiation signals, and activation of ERK in dorsal horn neurons by noxious stimulation is known to contribute to pain hypersensitivity. In order to elucidate the pathophysiological mechanisms of the cauda equina syndrome, secondary to spinal canal stenosis, we evaluated walking dysfunction triggered by forced exercise and activation of ERK in the dorsal horn using a rat model of neuropathic intermittent claudication. Rats in the lumbar canal stenosis (LCS) group showed a shorter running distance from 1 to 14 days after surgery.

View Article and Find Full Text PDF

Effects of OP-1206 alpha-CD on walking dysfunction in the rat neuropathic intermittent claudication model: comparison with nifedipine, ticlopidine and cilostazol.

Prostaglandins Other Lipid Mediat

July 2003

Discovery Research Laboratories III, Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimanmoto-cho, Mishima-gun, Osaka 618-8585, Japan.

The systemic treatment effects of OP-1206 alpha-CD (17S-20-dimethyl-trans-delta 2-PGE1 alpha-cyclodextrin clathrate), a prostaglandin E1 (PGE1) analogue, on walking dysfunction, spinal cord blood flow (SCBF) and skin blood flow (SKBF) were assessed in the rat neuropathic intermittent claudication (IC) model in comparison with nifedipine (dimethyl 1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyridinedicarboxylate), ticlopidine (5-[(2-chlorophenyl)methyl]-4,5,6,7-tetrahydrothieno[3,2-C]pyridine hydrochloride) and cilostazol (6-[4-(1-cyclohexyl-1H-tetrazol-5-yl)-butoxy]-3,4-dihydro-2(1H)-quinolinone). Two pieces of silicone rubber strips were placed in the lumbar (L4 and L6) epidural space in rats. After surgery, walking function was measured using a treadmill apparatus.

View Article and Find Full Text PDF

Effects of orally administered OP-1206 alpha-CD with loxoprofen-Na on walking dysfunction in the rat neuropathic intermittent claudication model.

Prostaglandins Leukot Essent Fatty Acids

October 2003

Discovery Research Laboratories III, Minase Research Institute, Ono Pharmaceutical Co. Ltd., 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan.

An orally active prostaglandin E1 analogue, OP-1206 alpha-CD improves walking dysfunction in the rat spinal stenosis model. Loxoprofen-Na, a non-steroidal anti-inflammatory drug, is used to relieve chronic pain in patients with lumbar spinal canal stenosis. To determine whether the OP-1206 alpha-CD in combination with loxoprofen-Na could induce a greater therapeutical effect on walking dysfunction and spinal cord blood flow (SCBF) than OP-1206 alpha-CD treatment alone after chronic spinal stenosis in the rat.

View Article and Find Full Text PDF

The effects of OP-1206 alpha-CD on walking dysfunction in the rat neuropathic intermittent claudication model.

Anesth Analg

June 2002

Discovery Research Laboratories III, Minase Research Institute, Ono Pharmaceutical Co, Ltd., 3-1-1 Sakurai Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan.

Unlabelled: IV prostaglandin E1 improves clinical symptoms in patients with spinal canal stenosis. In the present study, we assessed the effects of OP-1206 alpha-CD, an orally active prostaglandin E1 analog, on walking dysfunction in the rat neuropathic intermittent claudication model. To induce spinal stenosis, two pieces of silicon rubber were placed in the lumbar (L4-6) epidural space in rats.

View Article and Find Full Text PDF

Prostaglandin E1 (PGE1) is commonly used in therapy for obstructive diseases, including ischemic retinopathy, in which pathogenetic reactive oxygen intermediates are responsible. However, the mechanism(s) of PGE1 in reducing tissue damage is still unclear. Adult T-cell leukemia-derived factor/human thioredoxin (ADF) is induced by oxidative stresses and has protective activity against oxidative cellular injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!