Glucocorticoid treatment induces expression of small heat shock proteins in human satellite cell populations: consequences for a desmin-related myopathy involving the R120G alpha B-crystallin mutation.

Neuromuscul Disord

Laboratoire Cytosquelette et Développement, Université Paris VI, CNRS UMR 7000, Faculté de Médecine Pitié-Salpêtrière, 105 Boulevard De l'Hôpital, 75634 Cedex 13, Paris, France.

Published: June 2002

A missense mutation (R120G) of the molecular chaperone alpha B-crystallin has recently been linked to a familial form of desmin-related myopathy characterized by intrasarcoplasmic aggregates of desmin. It was previously demonstrated that the mutant R120G had a defective chaperone-like function. However, the cellular and physiopathological consequences of R120G mutant expression in human muscle cells are as yet unclear. Thus, we developed a cellular model for the study of this R120G alpha B-crystallin-related desmin-related myopathy. We demonstrate that dexamethasone enhances alpha B-crystallin and HSP27 expression in normal and desmin-related myopathy-derived muscle cells. In the undifferentiated desmin-related myopathy satellite cell population no intracytoplasmic aggregates were observed. However, in differentiated satellite cells derived from a related myopathy patient, we observed an enhanced plasma membrane localization of alpha B-crystallin following glucocorticoid. We also observed that the protective effect against stress of alpha B-crystallin is altered upon glucocorticoid-induced small heat shock protein expression for the desmin-related myopathy-derived cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0960-8966(01)00306-6DOI Listing

Publication Analysis

Top Keywords

alpha b-crystallin
20
desmin-related myopathy
16
small heat
8
heat shock
8
satellite cell
8
r120g alpha
8
muscle cells
8
desmin-related myopathy-derived
8
desmin-related
6
alpha
6

Similar Publications

Aging is characterized by extensive metabolic dysregulation. Redox coenzyme nicotinamide adenine dinucleotide (NAD) can exist in oxidized (NAD) or reduced (NADH) states, which together form a key NADH/NAD redox pair. Total levels of NAD decline with age in a tissue-specific manner, thereby playing a significant role in the aging process.

View Article and Find Full Text PDF

Background: A strong association between multiple sclerosis (MS) and Epstein-Barr virus (EBV) has been established but the exact role of EBV in MS remains controversial. Recently, molecular mimicry between EBNA1 and specific GlialCAM, CRYAB and ANO2 peptides has been suggested as a possible pathophysiological mechanism. The aim of this study was to analyse anti-EBV antibodies in MS patients against (I) EBV lifecycle proteins, (II) putative cross-reactive peptides, and (III) during treatment.

View Article and Find Full Text PDF

HSPB4 and HSPB5 (α-crystallins) have shown increasing promise as neuroprotective agents, demonstrating several anti-apoptotic and protective roles in disorders such as multiple sclerosis and diabetic retinopathy. HSPs are highly regulated by post-translational modification, including deamidation, glycosylation, and phosphorylation. Among them, T148 phosphorylation has been shown to regulate the structural and functional characteristics of HSPB4 and underlie, in part, its neuroprotective capacity.

View Article and Find Full Text PDF

αB-crystallin is an archetypical member of the small heat shock proteins (sHSPs) vital for cellular proteostasis and mitigating protein misfolding diseases. Gaining insights into the principles defining their molecular organization and chaperone function have been hindered by intrinsic dynamic properties and limited high-resolution structural analysis. To disentangle the mechanistic underpinnings of these dynamical properties, we ablate a conserved IXI-motif located within the N-terminal (NT) domain of human αB-crystallin implicated in subunit exchange dynamics and client sequestration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!