Widespread neuronal cell death occurs during normal development and as a result of pathological conditions in the nervous system of many organisms. In this study, we investigated the cytotoxicity induced by H(2)O(2) in Aplysia mechanosensory neurons, which serve as a useful model in the study of learning and memory. Treatment with hydrogen peroxide (10(-2)-10 mM) for 3 h produced a nuclear DNA breakage in Aplysia sensory neurons, as revealed by TdT-mediated dUTP nick end labeling (TUNEL) staining, in a dose-dependent manner. Prolonged treatment (6-18 h) of Aplysia sensory neurons with 1 mM hydrogen peroxide produced dramatic morphological changes, such as neurite fragmentation, disintegration of the cell body, and a change in the resting membrane potential. This change in the resting potential was biphasic, and was initially hyperpolarized about 6 h after hydrogen peroxide treatment, but this later shifted to a depolarization some 13-18 h after treatment. Electron microscopic analysis also showed that this hydrogen peroxide-induced cell death was associated with apoptotic nuclear shrinkage, chromatin condensation, and necrotic swelling of organelles. Our results demonstrate that Aplysia sensory neurons show both apoptotic and necrotic characteristics as well as biphasic changes in resting potential during hydrogen peroxide-induced cell death.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-8993(02)02646-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!