Identification of a novel smooth muscle associated protein, smap2, upregulated during neointima formation in a rat carotid endarterectomy model.

Biochim Biophys Acta

Department of Molecular and Cell Biology, Molecular Biology Laboratory, Medicinal Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino, Saitama 330-8530, Japan.

Published: June 2002

Proliferation of aortic smooth muscle cells is an important event in vascular lesion formation. To identify new genes that are involved in neointima formation, we constructed an aortic 3'-directed cDNA library. The novel cDNA of a gene designated smooth muscle associated protein 2 (smap2) was isolated. The full-length cDNA of smap2 is 2914 base pairs long and contains an open reading frame of 1338 base pairs. Dot blot analysis revealed that smap2 was expressed particularly in aorta. The deduced amino acid sequence of smap2 contains two thyroglobulin type-1 domains, two EF-hand calcium-binding domains and putative signal peptide. Furthermore, we demonstrated that smap2 mRNA was upregulated during neointima formation in a rat carotid endarterectomy model. These findings suggest that smap2 might be involved in the progression of atherosclerosis in aorta.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0167-4781(02)00345-7DOI Listing

Publication Analysis

Top Keywords

smooth muscle
12
neointima formation
12
muscle associated
8
associated protein
8
protein smap2
8
upregulated neointima
8
formation rat
8
rat carotid
8
carotid endarterectomy
8
endarterectomy model
8

Similar Publications

Epstein-Barr virus-associated smooth muscle tumors (EBV-SMTs) represent a rare category of soft tissue tumors that are predominantly seen in individuals with compromised immune systems. Pathologically, EBV-SMT has malignant potential because of its unpredictable nature. These tumors can manifest at various anatomical sites or even multiple lesions in different locations.

View Article and Find Full Text PDF

Background: Recent studies show that hyperactivation of mTOR (mammalian target of rapamycin) signaling plays a causal role in the development of thoracic aortic aneurysm and dissection. Modulation of PP2A (protein phosphatase 2A) activity has been shown to be of significant therapeutic value. In light of the effects that PP2A can exert on the mTOR pathway, we hypothesized that PP2A activation by small-molecule activators of PP2A could mitigate AA progression in Marfan syndrome (MFS).

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a debilitating neurodegenerative disease that is marked by profound neurovascular dysfunction and significant cell-specific alterations in the brain vasculature. Recent advances in high throughput single-cell transcriptomics technology have enabled the study of the human brain vasculature at an unprecedented depth. Additionally, the understudied niche of cerebrovascular cells, such as endothelial and mural cells, and their subtypes have been scrutinized for understanding cellular and transcriptional heterogeneity in AD.

View Article and Find Full Text PDF

In patients with acute myocardial infarction (AMI), thrombolytic therapy and revascularization strategies allow complete recanalization of occluded epicardial coronary arteries. However, approximately 35% of patients still experience myocardial ischemia/reperfusion (I/R) injury, which contributing to increased AMI mortality. Therefore, an accurate understanding of myocardial I/R injury is important for preventing and treating AMI.

View Article and Find Full Text PDF

Platelet membrane-modified exosomes targeting plaques to activate autophagy in vascular smooth muscle cells for atherosclerotic therapy.

Drug Deliv Transl Res

January 2025

Center for Coronary Heart Disease, Department of Cardiology, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037, China.

Atherosclerosis is one of the leading causes of ischemic cardiovascular disease worldwide. Recent studies indicated that vascular smooth muscle cells (VSMCs) play an indispensable role in the progression of atherosclerosis. Exosomes derived from mesenchymal stem cells (MSCs) have demonstrated promising clinical applications in the treatment of atherosclerosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!