The contents of single plant cells can be sampled using glass microcapillaries. By combining such single-cell sampling with reverse transcription-polymerase chain reaction (RT-PCR), transcripts of individual genes can be identified and, in principle, quantified. This provides a valuable technique for the analysis and quantification of the intercellular distribution of gene expression in complex tissues. In a proof-of-principle study, the cellular locations of the transcripts of the eight isoforms of actin ( ACT) expressed in Arabidopsis thaliana (L.) Heynh. were analyzed. Cell sap was extracted from epidermal and mesophyll cells of leaves of 3- to 4-week-old plants. Single-cell (SC)-RT-PCR was used to amplify the actin transcripts using specific primer pairs for ACT1, 2, 3, 4, 7, 8, 11 and 12. Only ACT2 and ACT8 were found in epidermal and in mesophyll cells. In individual trichomes, in addition to ACT2 and ACT8, ACT7 and ACT11 transcripts were detectable. By employing the already well-characterized actin system we demonstrate the practicality and power of SC-RT-PCR as a technique for analyzing gene expression at the ultimate level of resolution, the single cell.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-001-0732-yDOI Listing

Publication Analysis

Top Keywords

gene expression
8
epidermal mesophyll
8
mesophyll cells
8
act2 act8
8
distribution actin
4
actin gene
4
gene isoforms
4
isoforms arabidopsis
4
arabidopsis leaf
4
leaf measured
4

Similar Publications

Histone Modifications and DNA Methylation in Psoriasis: A Cellular Perspective.

Clin Rev Allergy Immunol

January 2025

Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.

In recent years, epigenetic modifications have attracted significant attention due to their unique regulatory mechanisms and profound biological implications. Acting as a bridge between environmental stimuli and changes in gene activity, they reshape gene expression patterns, providing organisms with regulatory mechanisms to respond to environmental changes. A growing body of evidence indicates that epigenetic regulation plays a crucial role in the pathogenesis and progression of psoriasis.

View Article and Find Full Text PDF

Titanium (Ti)-based materials are favored for hard tissue applications, yet their bioinertness limits their success. This study hypothesizes that functionalizing Ti materials with chitosan nano/microspheres and calcitriol (VD) will enhance their bioactivity by improving cellular activities and mineralization. To test this, chitosan particles were applied uniformly onto Ti surfaces using electrophoretic deposition (EPD) at 20 V for 3 minutes.

View Article and Find Full Text PDF

Cleft lip and palate (CL/P) are prevalent congenital anomalies with complex genetic causes. The G874A mutation of T-box transcription factor 22 (TBX-22) gene is notably associated with CL/P, while the underlying mechanism remains to be clarified. Studies have shown that the restriction of epithelial-mesenchymal transformation (EMT) process in medial edge epithelial cells (MEEs) is crucial for CL/P development.

View Article and Find Full Text PDF

A gene within a single subclade of NCED genes is triggered in response to both, short- and long-term dehydration treatments, in three model dicot species. During dehydration, some plants can rapidly synthesise the stress hormone abscisic acid (ABA) in leaves within 20 min, triggering the closure of stomata and limiting further water loss. This response is associated with significant transcriptional upregulation of Nine-cis-Epoxycarotenoid Dioxygenase (NCED) genes, which encode the enzyme considered to be rate-limiting in ABA biosynthesis.

View Article and Find Full Text PDF

A pan-cancer analysis: predictive role of ZNF32 in cancer prognosis and immunotherapy response.

Discov Oncol

January 2025

Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.

The zinc finger protein 32 (ZNF32) has been associated with high expression in various cancers, underscoring its significant function in both cancer biology and immune response. To further elucidate the biological role of ZNF32 and identify potential immunotherapy targets in cancer, we conducted an in-depth analysis of ZNF32. We comprehensively investigated the expression of ZNF32 across tumors using diverse databases, including TCGA, CCLE, TIMER2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!