Higher-plant chloroplast division requires some of the same genes that are involved in prokaryotic cell division. These include the FtsZ and MinD proteins. Other genes that might be involved in higher-plant chloroplast division have yet to be characterized. The Arabidopsis thaliana (L.) Heynh. MinE ( AtMinE1) gene was identified in the genomic database, isolated by reverse transcription-polymerase chain reaction and constitutively expressed in tobacco ( Nicotiana tabacum L.) and Arabidopsis plants in both the sense and antisense orientation. Confocal and electron-microscopic analysis of the sense-overexpressing AtMinE1 transgenic tobacco and Arabidopsis plants revealed that the chloroplasts were abnormal in size and shape compared to wild-type Arabidopsis and tobacco chloroplasts. Our results, based on the overexpression of the AtMinE1 gene in tobacco and Arabidopsis, confirm that the AtMinE1 gene is involved in plant chloroplast division.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-001-0728-7 | DOI Listing |
Mol Plant
January 2025
Division of Applied Life Sciences (BK21(+)), Plant Biological Rhythm Research Center and PMBBRC, Gyeongsang National University, Jinju-52828, Korea. Electronic address:
The intricate interplay between cellular circadian rhythms, primarily manifested in the chloroplast redox oscillations-characterized by diel hyperoxidation/reduction cycles of 2-Cys Peroxiredoxins-and the nuclear transcription/translation feedback loop (TTFL) machinery within plant cells, demonstrates a remarkable temporal coherence. However, the molecular mechanisms underlying the integration of these circadian rhythms remain elusive. Here, we elucidate that the chloroplast redox protein, NADPH-dependent thioredoxin reductase type-C (NTRC), modulates the integration of the chloroplast redox rhythms and nuclear circadian clocks by regulating intracellular levels of reactive oxygen species and sucrose.
View Article and Find Full Text PDFMicrobiol Resour Announc
January 2025
Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA.
We present the complete chloroplast genome of the eelgrass from Monterey, California. The genome is circular and 144,675 bp in length. It consists of 82 protein-coding, 31 transfer RNA, and 8 ribosomal RNA genes and is 99.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Unité Propre de Recherche Innovante, ERIT Plant Science, Interactions and Innovation, Avignon Université, 301 Rue Baruch de Spinoza, 84140 Avignon, France.
Ultraviolet C (UV-C) flash treatment represents a promising method for priming plants. This study compared the effects of 1 s (flash) and 60 s (60 s) UV-C exposures on the transcriptome of L. plants.
View Article and Find Full Text PDFPLoS One
January 2025
Danau Girang Field Centre, c/o Sabah Wildlife Department, Kota Kinabalu, Malaysia.
Characterizing the feeding ecology of threatened species is essential to establish appropriate conservation strategies. We focused our study on the proboscis monkey (Nasalis larvatus), an endangered primate species which is endemic to the island of Borneo. Our survey was conducted in the Lower Kinabatangan Wildlife Sanctuary (LKWS), a riverine protected area that is surrounded by oil palm plantations.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
The Energy and Resources Institute, Lodi Road, New Delhi, 110003, India.
The major limiting factor of photosynthesis in C3 plants is the enzyme, rubisco which inadequately distinguishes between carbon dioxide and oxygen. To overcome catalytic deficiencies of Rubisco, cyanobacteria utilize advanced protein microcompartments, called the carboxysomes which envelopes the enzymes, Rubisco and Carbonic Anhydrase (CA). These microcompartments facilitate the diffusion of bicarbonate ions which are converted to CO by CA, following in an increase in carbon flux near Rubisco boosting CO fixation process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!