Modeling combined transport of water and test macromolecules across the glomerular capillary barrier: dynamics of the permselectivity.

Eur Biophys J

Human Physiology Division, Department of Neurosciences, Faculty of Medicine and Surgery, University of Rome Tor Vergata, Italy.

Published: June 2002

The structure, function, and composition of the basement membrane of the glomerular capillaries of the mammalian kidney have been extensively studied, in light of the membrane's important physiological role in glomerular filtration of macromolecules and of its frequent involvement in renal diseases. An analytical mathematical model, based on the fiber matrix theory, was developed to describe the dynamics of the permselective function of the glomerular capillary barrier using mainly its hemodynamic and morphometric variables. The glomerular basement membrane was represented as a homogeneous three-dimensional meshwork of fibers of uniform length (L(f)), radius (R(f)), and packing density (N(fv)) and characterized by a local Darcy permeability (a measure of the intrinsic hydraulic conductance of the glomerular basement membrane). The model was appropriate for simulating in vivo fractional clearance data of neutral test macromolecules from an experimental rat model. We believe that the L(f) and R(f) best-fit numerical values, characterizing a glomerular basement membrane geometrical arrangement, may represent diagnostic measures for renal function in health and disease. That is, these parameters may signify new insights for the diagnosis of some human nephropathies and possibly may explain the beneficial effects and/or sites of action of some pharmacological modifiers (e.g., angiotensin converting enzyme inhibitors).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00249-001-0203-1DOI Listing

Publication Analysis

Top Keywords

basement membrane
16
glomerular basement
12
test macromolecules
8
glomerular capillary
8
capillary barrier
8
glomerular
7
modeling combined
4
combined transport
4
transport water
4
water test
4

Similar Publications

The anatomical, histological, and histochemical characteristics of the foregut (FG), midgut (MG), and hindgut (HG), as well as their alterations during the ovarian cycle in female prawns, Macrobrachium rosenbergii, were investigated. The esophagus (ESO), cardia (CD), and pylorus (PY) are the main components of the FG. An epithelium (Ep) with thick cuticle (Cu) layers lining the ESO, and the ESO is encircled by the ESO glands.

View Article and Find Full Text PDF

Reichert's membrane (RM) is a basement membrane of gigantic proportions that surrounds the mammalian embryo following implantation. It is part of the parietal yolk sac, which originates from the wall of the preimplantation blastocyst. RM persists from implantation to birth in rodents and analogous structures occur in other mammals, including primates.

View Article and Find Full Text PDF

Blood-based extracellular matrix (ECM) fragments have been identified as potential pharmacologic biomarkers in spondyloarthritis and diagnostic biomarkers in psoriatic arthritis and psoriasis vulgaris. This study aimed to explore whether ECM fragments can differentiate patients with psoriasis from healthy controls (HC) and determine their potential as biomarkers for response to treatment in psoriasis. The study population included 59 patients with moderate to severe psoriasis, not receiving systemic anti-psoriatic treatment at inclusion, and 52 HC matched by age, sex, and BMI.

View Article and Find Full Text PDF

Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].

View Article and Find Full Text PDF

Sarcolemma resilience and skeletal muscle health require O-mannosylation of dystroglycan.

Skelet Muscle

January 2025

Department of Molecular Physiology and Biophysics, and Department of Neurology, Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.

Background: Maintaining the connection between skeletal muscle fibers and the surrounding basement membrane is essential for muscle function. Dystroglycan (DG) serves as a basement membrane extracellular matrix (ECM) receptor in many cells, and is also expressed in the outward-facing membrane, or sarcolemma, of skeletal muscle fibers. DG is a transmembrane protein comprised of two subunits: alpha-DG (α-DG), which resides in the peripheral membrane, and beta-DG (β-DG), which spans the membrane to intracellular regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!