The function of the transcription regulator ArgRIII in the expression of several genes involved in the metabolism of arginine in yeast has been well studied. It was previously reported that it is also an inositol phosphate multikinase and an important factor of the mRNA export pathway [reviewed by Shears (2000) Bioessays 22, 786-789]. In the present study we report the cloning of a full-length 1248-bp cDNA encoding a human inositol phosphate multikinase (IPMK). This protein has a calculated molecular mass of 47.219 kDa. Functionally important motifs [inositol phosphate-binding site, ATP-binding site, catalytically important SSLL (Ser-Ser-Leu-Leu) domain] are conserved between the human IPMK and yeast ArgRIII. Bacterially expressed protein demonstrated an inositol phosphate multikinase activity similar to that of yeast ArgRIII. Ins(1,4,5)P3 is phosphorylated at positions 3 and 6 up to Ins(1,3,4,5,6)P5. The human IPMK fused with a fluorescent protein tag is localized predominantly in the nucleus when transiently expressed in mammalian cells. A basic cluster in the protein's C-terminus is positively involved in nuclear targeting. These findings are consistent with the concept of a nuclear inositol phosphate signalling and phosphorylation pathway in mammalian cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1222796 | PMC |
http://dx.doi.org/10.1042/BJ20020327 | DOI Listing |
Int J Mol Sci
January 2025
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
2-arachnadoyl glycerol (2-AG) is one of the most common endocannabinoid molecules with anti-proliferative, cytotoxic, and pro-proliferative effects on different types of tumors. Typically, it induces cell death via cannabinoid receptor 1/2 (CB1/CB2)-linked ceramide production. In breast cancer, ceramide is counterbalanced by the sphingosine-1-phosphate, and thus the mechanisms of 2-AG influence on proliferation are poorly understood.
View Article and Find Full Text PDFBiomolecules
January 2025
Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
The Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP1) is a multidomain protein consisting of two protein-protein interaction domains, the Src homology 2 (SH2) domain, and the proline-rich region (PRR), as well as three phosphoinositide-binding domains, the pleckstrin homology-like (PHL) domain, the 5-phosphatase (5PPase) domain, and the C2 domain. SHIP1 is commonly known for its involvement in the regulation of the PI3K/AKT signaling pathway by dephosphorylation of phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P) at the D5 position of the inositol ring. However, the functional role of each domain of SHIP1 for the regulation of its enzymatic activity is not well understood.
View Article and Find Full Text PDFComput Biol Med
January 2025
Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia; Drug Development Study Centre, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia.
A higher death rate is associated with multiple factors, including medication resistance and co-infection with the human immunodeficiency virus (HIV). This shows the need to obtain new and effective drug candidates in improving tuberculosis (TB) treatment. In addition, the phosphatidylinositol mannosyltransferase (PimA) enzyme starts the production of phosphatidyl-myo-inositol.
View Article and Find Full Text PDFNat Plants
January 2025
National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
Arabidopsis PHOSPHATE 1 (AtPHO1) and its closest homologue AtPHO1;H1 are phosphate transporters that load phosphate into the xylem vessel for root-to-shoot translocation. AtPHO1 and AtPHO1;H1 are prototypical members of the unique SPX-EXS family, whose structural and molecular mechanisms remain elusive. In this study, we determined the cryogenic electron microscopy structure of AtPHO1;H1 binding with inorganic phosphate (Pi) and inositol hexakisphosphate in a closed conformation.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Centre for Molecular Biophysics, UPR CNRS 4301, Orleans, France.
The hypoxic microenvironment is crucial for tumour cell growth and invasiveness. Tumour tissue results from adaptation to reduced oxygen availability. Hypoxia first activates pro-angiogenic signals for alleviation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!