The conventional Lorenz-Mie formalism is extended to the case for a coated sphere embedded in an absorbing medium. The apparent and inherent scattering cross sections of a particle, derived from the far field and near field, respectively, are different if the host medium is absorptive. The effect of absorption within the host medium on the phase-matrix elements associated with polarization depends on the dielectric properties of the scattering particle. For the specific cases of a soot particle coated with a water layer and an ice sphere containing an air bubble, the phase-matrix elements -P12/P11 and P33/P11 are unique if the shell is thin. The radiative transfer equation for a multidisperse particle system embedded within an absorbing medium is discussed. Conventional multiple-scattering computational algorithms can be applied if scaled apparent single-scattering properties are applied.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.41.002740DOI Listing

Publication Analysis

Top Keywords

embedded absorbing
12
host medium
12
absorbing medium
8
phase-matrix elements
8
medium
5
inherent apparent
4
apparent scattering
4
scattering properties
4
properties coated
4
coated uncoated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!