Genetics, genomics and electrophysiology are transforming our understanding of the nicotinic acetylcholine receptors (nAChRs). Caenorhabditis elegans contains the largest known family of nAChR subunit genes (27 members), while Drosophila melanogaster contains an exclusively neuronal nAChR gene family (10 members). In C. elegans, several genetic screens have enabled the identification of nAChR subunits, along with novel proteins that act upstream and downstream of functional nAChRs. The C. elegans genome project has identified many new candidate nAChR subunits and the calculated electrostatic potential energy profiles for the M2 channel-lining regions predict considerable functional diversity. The respective roles of subunits are under investigation using forward and reverse genetics. Electrophysiological and reporter gene studies have demonstrated roles for particular subunits in levamisole-sensitive muscle nAChRs and a role for nAChRs in pharyngeal pumping. Recombinant homomeric and heteromeric C. elegans nAChRs have been expressed in Xenopus laevis oocytes. In D. melanogaster, three new nAChR a subunits have been cloned, one of which shows multiple variant transcripts arising from alternative splicing and A-to-I pre-mRNA editing. Thus, studies on the genetic model organisms C. elegans and D. melanogaster have revealed different routes to generating molecular and functional diversity in the nAChR gene family and are providing new insights into the in vivo functions of individual family members.

Download full-text PDF

Source

Publication Analysis

Top Keywords

nachr subunits
12
acetylcholine receptors
8
caenorhabditis elegans
8
drosophila melanogaster
8
nachr gene
8
gene family
8
family members
8
functional diversity
8
roles subunits
8
elegans
6

Similar Publications

Alcohol-induced liver injury is mediated via α4-containing nicotinic acetylcholine receptors expressed in hepatocytes.

Alcohol Clin Exp Res (Hoboken)

January 2025

Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky, USA.

Background: Our previous study demonstrated that alcohol induced the expression of the α4 subunit of nicotinic acetylcholine receptors (nAChRs) in the livers of wild type mice (WT), and that whole-body α4 nAChR knockout mice (α4KO) showed protection against alcohol-induced steatosis, inflammation, and injury. Based on these findings, we hypothesized that hepatocyte-specific α4 nAChRs may directly contribute to the detrimental effects of alcohol on the liver.

Methods: Hepatocyte-specific α4 knockout mice (α4HepKO) were generated, and the absence of α4 nAChR was confirmed through PCR of genomic DNA.

View Article and Find Full Text PDF

Dopamine critically regulates neuronal excitability and promotes synaptic plasticity in the striatum, thereby shaping network connectivity and influencing behavior. These functions establish dopamine as a key neuromodulator, whose release properties have been well-studied in rodents but remain understudied in nonhuman primates. This study aims to close this gap by investigating the properties of dopamine release in macaque striatum and comparing/contrasting them to better-characterized mouse striatum, using ex vivo brain slices from male and female animals.

View Article and Find Full Text PDF

Genetic variation in the α5 nicotinic acetylcholine receptor (nAChR) subunit of mice results in behavioral deficits linked to the prefrontal cortex (PFC). rs16969968 is the primary Single Nucleotide Polymorphism (SNP) in CHRNA5 strongly associated with nicotine dependence and schizophrenia in humans. We performed single cell-electrophysiology combined with morphological reconstructions on layer 6 (L6) excitatory neurons in the medial PFC (mPFC) of wild type (WT) rats, rats carrying the human coding polymorphism rs16969968 in Chrna5 and α5 knockout (KO) rats.

View Article and Find Full Text PDF

In recent decades, the common and the tropical bed bugs have experienced a resurgence in many parts of the world. The evolution of insecticide resistance in bed bug populations is considered a significant factor contributing to this resurgence. We analyzed samples of Cimex lectularius L.

View Article and Find Full Text PDF

Background: Merkel cell carcinoma (MCC) is a rare, aggressive cutaneous malignancy with neuroendocrine differentiation. Several molecular pathways have been implicated in MCC development and multiple cell-of-origin candidates have been proposed, including neural crest cells, which express acetylcholine receptors (AChRs). The role of nicotinic acetylcholine receptors (nAChRs) in MCC has not been explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!