The release of heavy metals from uncovered and nickel-covered brass pumps has been evaluated by ICP-MS analysis in both simple ultrapure water and 3% acetic acid solution (mimic of neutral and acid edible liquids, respectively), following a procedure similar to that recommended by the National Sanitation Foundation (NSF) International, Test Procedure P203. The results found highlight that the main release regards zinc, copper and lead, i.e. the three major metals present in brass alloys. The first contact of brass surfaces with the extraction solvent leads to an extensive Pb release which is comparable with that observed for Cu and Zn. Subsequent washings reduce markedly the Pb release, thus rising in evidence a progressive surface passivation. In particular, the Pb release found after four repeated washings turns out to approach the limit set by both Italian and USA governments for liquids used for food purposes when determined in neutral media, while it remains quite higher when evaluated in acid media. Release analyses conducted on nickel-covered brass pumps point out that the Niploy nickel coating process is very effective for brass surface protection, in that the Pb release is reduced of about three orders of magnitude, but a Ni release exceeding the relevant permitted level is in this case observed.
Download full-text PDF |
Source |
---|
ACS Sens
January 2025
Department of Physics, Umeå University, Umeå SE-901 87, Sweden.
Bacterial spores are highly resilient and capable of surviving extreme conditions, making them a persistent threat in contexts such as disease transmission, food safety, and bioterrorism. Their ability to withstand conventional sterilization methods necessitates rapid and accurate detection techniques to effectively mitigate the risks they present. In this study, we introduce a surface-enhanced Raman spectroscopy (SERS) approach for detecting spores by targeting calcium dipicolinate acid (CaDPA), a biomarker uniquely associated with bacterial spores.
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India.
Eukaryotic Initiation Factor 4 (eIF4) is a group of factors that activates mRNA for translation and recruit 43S preinitiation complex (PIC) to the mRNA 5' end, forming the 48S PIC. The eIF4 factors include mRNA 5' cap-binding protein eIF4E, ATP-dependent RNA helicase eIF4A, and scaffold protein eIF4G, which anchors eIF4A and eIF4E. Another eIF4 factor, eIF4B, stimulates the RNA helicase activity of eIF4A and facilitates mRNA recruitment.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115.
Epstein-Barr virus (EBV) establishes persistent infection, causes infectious mononucleosis, is a major trigger for multiple sclerosis and contributes to multiple cancers. Yet, knowledge remains incomplete about how the virus remodels host B cells to support lytic replication. We previously identified that EBV lytic replication results in selective depletion of plasma membrane (PM) B cell receptor (BCR) complexes, composed of immunoglobulin and the CD79A and CD79B signaling chains.
View Article and Find Full Text PDFDokl Biochem Biophys
January 2025
I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
Graves' disease is caused by overactivation of the thyroid-stimulating hormone receptor (TSHR). One approach for its treatment may be the use of negative allosteric modulators (NAM) of TSHR, which normalize TSHR activity and do not cause thyroid hormone (TH) deficiency. The aim of the work was to study the effect of a new compound 5-amino-4-(4-bromophenyl)-2-(methylthio)thieno[2,3-d]pyrimidine-6-carboxylic acid N-tert-butylamide (TPY4) on the basal and TSH-stimulated TH production in cultured FRTL-5 thyrocytes and on basal and thyrotropin-releasing hormone (TRH)-stimulated TH levels in the blood of rats.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Infectious Disease Department, Hangzhou First People's Hospital Tonglu Hospital, Hangzhou, Zhejiang, China.
This study synthesizes a novel three-dimensional (3D) porous coordination polymer (CP), {[Co(L)₀.₅(H₂O)]·NMP·H₂O} (1), via a solvothermal method in a mixed solvent of water and NMP (1-methyl-2-pyrrolidinone), reacting Co(II) ions with H₄L (1,4-bis(5,6-carboxybenzimidazolylmethyl)benzene). The CP exhibits unique fluorescence properties, emitting at 420 nm under UV light excitation at 350 nm, and serves as a carrier for Mesalazine (MSZ) in therapeutic applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!