AI Article Synopsis

  • Alcolapia grahami is a specialized tilapia that thrives in the extreme conditions of Lake Magadi in Kenya, characterized by high alkalinity and salinity.
  • The fish demonstrates unique ureotelic properties, excreting urea instead of ammonia and showing no change in urea cycle enzymes when moved to less saline water.
  • Upon acclimation to dilute lake water, the fish experiences reduced metabolic oxygen consumption and enhanced swimming performance, indicating that energy usually spent on acid-base regulation can be redirected to physical activity.

Article Abstract

Alcolapia grahami is a unique ureotelic tilapia that lives in the highly alkaline, saline Lake Magadi, Kenya (pH, approximately 10.0; alkalinity, approximately 380 mmol L(-1); Na(+), approximately 350 mmol L(-1); Cl(-), approximately 110 mmol L(-1); osmolality, approximately 580 mosm kg(-1)). The fish survived well upon gradual exposure to dilute lake water (down to 1%, essentially freshwater). Urea excretion continued, and there was no ammonia excretion despite favorable conditions, indicating that ureotelism is obligatory. Levels of most ornithine-urea cycle enzymes in the liver were unchanged relative to controls kept for the same period in 100% lake water. The fish exhibited good abilities for hypo- and hyperregulation, maintaining plasma Na(+), Cl(-), and osmolality at levels typical of marine and freshwater teleosts in 100% and 1% lake water, respectively. Plasma total CO(2) did not change with environmental dilution. Routine oxygen consumption (Mo(2)) was extremely high in 100% lake water but decreased by 40%-68% after acclimation to dilute lake water. At every fixed swimming speed, Mo(2) was significantly reduced (by 50% at high speeds), and critical swimming speed was elevated in fish in 10% lake water relative to 100% lake water. Osmotic and Cl(-) concentration gradients from water to plasma were actually increased, and osmotic and Na(+) gradients were reversed, in 10% and 1% dilutions relative to 100% lake water, whereas acid-base gradients were greatly reduced. We suggest that approximately 50% of the animal's high metabolic demand originates from the cost of acid-base regulation in the highly alkaline Lake Magadi. When this load is reduced by environmental dilution, the energy saved can be diverted to enhanced swimming performance.

Download full-text PDF

Source
http://dx.doi.org/10.1086/340626DOI Listing

Publication Analysis

Top Keywords

lake water
32
100% lake
20
mmol l-1
12
lake
10
water
9
highly alkaline
8
lake magadi
8
dilute lake
8
water plasma
8
environmental dilution
8

Similar Publications

As one of their key regulatory ecosystem functions, inland lakes serve as CO sinks. The CO sink capacity of inland lakes depends on their water temperature and salinity as well as their water volume which are all highly sensitive to climate conditions. This paper aims to quantitatively estimate the change in the CO sink capacity of Wadi El-Rayan Lakes under climate change scenarios.

View Article and Find Full Text PDF

Biotic factors shape the structure and dynamics of denitrifying communities within cyanobacterial aggregates.

Environ Res

January 2025

Shanghai Key Lab for Urban Ecological Processes and Eco-Restorations, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China; Center for Global Change and Ecological Forecasting, Institute of Eco-Chongming, Shanghai, China. Electronic address:

Eutrophication caused by human activities has severely impacted freshwater ecosystems, leading to harmful cyanobacterial blooms that threaten water quality and ecosystem stability. During blooms, denitrification is a key process for nitrogen removal, which can occur both in the sediment and in the waterbody mediated by cyanobacterial aggregate (CA)-associated microorganisms. In this study, the structure, dynamics and assembly mechanisms of CA-associated nirK-, nirS-, and nosZ-encoding denitrifying communities were investigated in the eutrophic Lake Taihu across the bloom season.

View Article and Find Full Text PDF

-(1,3-Dimethylbutyl)-'-phenyl--phenylenediamine-quinone (6PPD-Q) is a rubber-tire derivative which leaches into surface waters from roadway runoff, from tire particles and has been identified as a possible driver of urban runoff mortality syndrome in coho salmon. Sensitivity to this toxicant is highly variable across fish species and life stages. With environmental concentrations meeting or exceeding toxicity thresholds in sensitive fishes, the potential for ecologically relevant effects is significant.

View Article and Find Full Text PDF

Modulation of glymphatic system by visual circuit activation alleviates memory impairment and apathy in a mouse model of Alzheimer's disease.

Nat Commun

January 2025

Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.

Alzheimer's disease is characterized by progressive amyloid deposition and cognitive decline, yet the pathological mechanisms and treatments remain elusive. Here we report the therapeutic potential of low-intensity 40 hertz blue light exposure in a 5xFAD mouse model of Alzheimer's disease. Our findings reveal that light treatment prevents memory decline in 4-month-old 5xFAD mice and motivation loss in 14-month-old 5xFAD mice, accompanied by restoration of glial water channel aquaporin-4 polarity, improved brain drainage efficiency, and a reduction in hippocampal lipid accumulation.

View Article and Find Full Text PDF

We examined the potential of environmental DNA (eDNA) for identifying tsunami deposits in the geological record using lake-bottom sediments in the Tohoku region, Japan. The presence of eDNA from marine organisms in a lacustrine event deposit provides very strong evidence that the deposit was formed by an influx of water from the ocean. The diverse DNA assemblage in the deposit formed by the 2011 Tohoku-oki tsunami included DNA of marine origin indicating that eDNA has potential as an identifying proxy for tsunami deposits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!