Studies on the relevance of the glycan at Asn-52 of the alpha-subunit of human chorionic gonadotropin in the alphabeta dimer.

Biochem J

Department of Bio-Organic Chemistry, Bijvoet Center, Utrecht University, P.O. Box 80.075, NL-3508 TB Utrecht, The Netherlands.

Published: June 2002

Glycosylation of Asn-52 of the alpha-subunit (alphaAsn-52) is required for bioactivity of the alphabeta-dimeric human chorionic gonadotropin (hCG), although at a molecular level the effect of the glycan at alphaAsn-52 is not yet understood. To study the role of this glycan for heterodimer stability, the beta-subunit was recombined in solution with either the alpha-subunit or the alpha-subunit enzymically deglycosylated at alphaAsn-52. Enzymic deglycosylation avoids modification of the glycans at alphaAsn-78 and disturbing the protein folding. The efficiency of recombination after 16 h is 80%, independent of whether alphaAsn-52 is glycosylated or not. The dissociation constant of the hCG complex, with or without the glycan at alphaAsn-52, is less than 1 x 10(-5) s(-1), indicating that the glycan at alphaAsn-52 does not contribute significantly to the stability of the dimer. CD and NMR spectra indicate a local conformational difference between both alphabeta-dimeric hCG variants, most probably involving amino acids of the hCG beta-subunit close to the glycan at alphaAsn-52. These data explain the native-like receptor-binding abilities of hCG lacking the glycan at alphaAsn-52. It is proposed that for bioactivity the glycan at alphaAsn-52 is necessary for inducing and stabilizing a conformational change in hCG upon binding to the receptor, resulting in activation of the signal-transduction pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1222594PMC
http://dx.doi.org/10.1042/BJ20011482DOI Listing

Publication Analysis

Top Keywords

glycan alphaasn-52
24
alphaasn-52
9
glycan
8
asn-52 alpha-subunit
8
human chorionic
8
chorionic gonadotropin
8
hcg
6
studies relevance
4
relevance glycan
4
glycan asn-52
4

Similar Publications

Follicle-stimulating hormone (FSH), an α/β heterodimeric glycoprotein hormone, consists of functionally significant variants resulting from the presence or absence of either one of two FSHβ subunit N-glycans. The two most abundant variants are fully-glycosylated FSH24 (based on 24 kDa FSHβ band in Western blots) and hypo-glycosylated FSH21 (21 kDa band, lacks βAsn glycans). Due to its ability to bind more rapidly to the FSH receptor and occupy more FSH binding sites than FSH24, hypo-glycosylated FSH21 exhibits greater biological activity.

View Article and Find Full Text PDF

Glycosylation of Asn-52 of the alpha-subunit (alphaAsn-52) is required for bioactivity of the alphabeta-dimeric human chorionic gonadotropin (hCG), although at a molecular level the effect of the glycan at alphaAsn-52 is not yet understood. To study the role of this glycan for heterodimer stability, the beta-subunit was recombined in solution with either the alpha-subunit or the alpha-subunit enzymically deglycosylated at alphaAsn-52. Enzymic deglycosylation avoids modification of the glycans at alphaAsn-78 and disturbing the protein folding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!