4-Hydroxylation of debrisoquine by human CYP1A1 and its inhibition by quinidine and quinine.

J Pharmacol Exp Ther

Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bldg. 37, Rm. 3E24, Bethesda, MD 20892, USA.

Published: June 2002

A panel of 15 recombinant cytochromes P450 expressed in human B-lymphoblastoid cells was used to study debrisoquine 4-hydroxylation. Both CYP2D6 and CYP1A1 carried out the reaction. The apparent K(m) (micromolar) and V(max) (picomoles per minute per picomole of P450) for CYP2D6 were 12.1 and 18.2 and for CYP1A1 were 23.1 and 15.2, respectively. CYP1A1 debrisoquine 4-hydroxylase was inhibited by the CYP1A1 inhibitor alpha-naphthoflavone and the CYP1A1 substrate 7-ethoxyresorufin. Additionally and surprisingly, this reaction was also inhibited by quinidine and quinine, with respective IC(50) values of 1.38 +/- 0.10 and 3.31 +/- 0.14 microM, compared with those for CYP2D6 debrisoquine 4-hydroxylase of 0.018 +/- 0.05 and 3.75 +/- 2.07 microM, respectively. Anti-CYP1A1 monoclonal antibody (mAb) 1-7-1 abolished CYP1A1 debrisoquine hydroxylase and anti-CYP2D6 mAb 50-1-3 eradicated CYP2D6 debrisoquine 4-hydroxylase. Three further CYP2D6-specific reactions were tested: dextromethorphan O-demethylation, bufuralol 1'-hydroxylation, and sparteine dehydrogenation. The CYP2D6 specificity, judged by the CYP2D6/CYP1A1 activity ratios was 18.5, 7.0, 6.0, and 1.6 for dextromethorphan, bufuralol, sparteine, and debrisoquine, respectively. Thus, debrisoquine is not a specific CYP2D6 substrate and quinidine is not a specific CYP2D6 inhibitor. These findings have significant implications for the conduct of in vitro drug metabolism inhibition studies and underscore the fallacy of "specific chemical inhibitors" of a supergene family of enzymes that have overlapping substrate specificities. The use of highly specific mAbs in such studies is mandated. It is unclear as yet whether these findings have implications for the relationship between CYP2D6 genotype and in vivo debrisoquine 4-hydroxylase activity.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.301.3.1025DOI Listing

Publication Analysis

Top Keywords

debrisoquine 4-hydroxylase
16
quinidine quinine
8
debrisoquine
8
cyp2d6
8
cyp1a1 debrisoquine
8
cyp2d6 debrisoquine
8
specific cyp2d6
8
findings implications
8
cyp1a1
7
4-hydroxylation debrisoquine
4

Similar Publications

Cytochrome P450 (CYP) 3A4 plays a major role in drug metabolism. Its activity could be determined by non-invasive and cost-effective assays, such as breath analysis, for the personalised monitoring of drug response. For the first time, we identify an isotopically unlabelled CYP3A4 substrate, tolterodine that leads to the formation of a non-toxic volatile metabolite, acetone, which could potentially be applied to monitor CYP3A4 activity in humans.

View Article and Find Full Text PDF

This study aimed to investigate whether the water-soluble pharmaceutical form of phosphatidylcholine nanoparticles (wPC) stimulated the catalytic activity of CYP enzymes 2C9 and 2D6. We have shown that electroenzymatic CYP2C9 catalysis to nonsteroidal anti-inflammatory drug naproxen as a substrate was enhanced from 100% to 155% in the presence of wPC in media. Electroenzymatic CYP2D6 activity in the presence of the adrenoceptor-blocking agent bisoprolol as a substrate was elevated significantly from 100% to 144% when wPC was added to potassium phosphate buffer solution.

View Article and Find Full Text PDF

Aripiprazole (ARI) is an atypical antipsychotic which is a substrate of P-glycoprotein (P-gp), a transmembrane glycoprotein that plays a crucial role in eliminating potentially harmful compounds from the organism. ARI once-monthly (AOM) is a long-acting injectable form which improves treatment compliance. Genetic polymorphisms in ABCB1 may lead to changes in P-gp function, leading to individual differences in drug disposition.

View Article and Find Full Text PDF

The most frequent type of leukemia in Africa is chronic myeloid leukemia (CML). The genetic background of the rarer Philadelphia chromosome (Ph) Ph-ve (BCR-ABL-ve) subform of CML is largely unknown in African patients. Therefore, in this study, we aimed to investigate the role of CYP1A1 and 2D6 SNPs in the pathogenesis of Ph-ve CML in the Sudanese population.

View Article and Find Full Text PDF

Evaluation of machine learning algorithms and computational structural validation of CYP2D6 in predicting the therapeutic response to tamoxifen in breast cancer.

Eur Rev Med Pharmacol Sci

December 2024

Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain.

Objective: CYP2D6 plays a critical role in metabolizing tamoxifen into its active metabolite, endoxifen, which is crucial for its therapeutic effect in estrogen receptor-positive breast cancer. Single nucleotide polymorphisms (SNPs) in the CYP2D6 gene can affect enzyme activity and thus impact tamoxifen efficacy. This study aimed to use machine learning algorithms (MLAs) to identify significant predictors of Breast Cancer-Free Interval (BCFI) and to apply bioinformatics tools to investigate the structural and functional implications of CYP2D6 SNPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!