Nicotine increases hepatic oxygen uptake in the isolated perfused rat liver by inhibiting glycolysis.

J Pharmacol Exp Ther

Laboratory of Hepatobiology and Toxicology, Department of Pharmacology, CB #7365, Mary Ellen Jones Building, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

Published: June 2002

Nicotine influences energy metabolism, yet mechanisms remain unclear. Since the liver is one of the largest organs and performs many metabolic functions, the goal of this study was to determine whether nicotine would affect respiration and other metabolic functions in the isolated perfused liver. Infusion of 85 microM nicotine caused a rapid 10% increase in oxygen uptake over basal values of 105 +/- 5 micromol/g/h in perfused livers from fed rats, and an increase of 27% was observed with 850 microM nicotine. Concomitantly, rates of glycolysis of 105 +/- 8 micromol/g/h were decreased to 52 +/- 9 micromol/g/h with nicotine, whereas ketone body production was unaffected. Nicotine had no effect on oxygen uptake in glycogen-depleted livers from 24-h fasted rats. Furthermore, addition of glucose to perfused livers from fasted rats partially restored the stimulatory effect of nicotine. Infusion of atractyloside, potassium cyanide, or glucagon blocked the nicotine-induced increase in respiration. Intracellular calcium was increased in isolated hepatocytes by nicotine, a phenomenon prevented by incubation of cells with d-tubocurarine, a nicotinic acetylcholine receptor antagonist. Respiration was also increased approximately 30% in hepatocytes isolated from fed rats by nicotine, whereas hepatocytes isolated from fasted rats showed little response. In the presence of N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), an inhibitor of cyclic AMP-dependent protein kinase A, nicotine failed to stimulate respiration. These data support the hypothesis that inhibition of glycolysis by nicotine increases oxygen uptake due to an ADP-dependent increase in mitochondrial respiration.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.301.3.930DOI Listing

Publication Analysis

Top Keywords

oxygen uptake
16
nicotine
12
+/- micromol/g/h
12
fasted rats
12
nicotine increases
8
isolated perfused
8
glycolysis nicotine
8
metabolic functions
8
microm nicotine
8
105 +/-
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!