Evidence for a functional interaction between cingulin and ZO-1 in cultured cells.

J Biol Chem

Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland.

Published: August 2002

Cingulin, a protein component of the submembrane plaque of tight junctions (TJ), contains globular and coiled-coil domains and interacts in vitro with several TJ and cytoskeletal proteins, including the PDZ protein ZO-1. Overexpression of Xenopus cingulin in transfected Xenopus A6 cells resulted in the disruption of endogenous ZO-1 localization, suggesting that cingulin functionally interacts with ZO-1. Glutathione S-transferase pull-down experiments showed that a conserved ZO-1 interaction motif (ZIM) at the NH(2) terminus of cingulin is required for cingulin-ZO-1 interaction in vitro. An NH(2)-terminal region of cingulin, containing the ZIM, was sufficient, when fused to coiled-coil sequences, to target transfected cingulin to junctions. However, deletion of the ZIM did not abolish junctional localization of transfected cingulin in A6 cells, suggesting that cingulin can be recruited to TJ through multiple protein interactions. Interestingly, the ZIM was required for cingulin recruitment into ZO-1-containing adherens junctions of Rat-1 fibroblasts, indicating that cingulin junctional recruitment does not require the molecular context of TJ. Cingulin coiled-coil sequences enhanced the junctional accumulation of expressed cingulin head region in A6 cells, but purified recombinant cingulin did not form filaments under physiological conditions in vitro, suggesting that the cingulin coiled-coil domain acts primarily by promoting dimerization.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M203717200DOI Listing

Publication Analysis

Top Keywords

cingulin
15
suggesting cingulin
12
coiled-coil sequences
8
transfected cingulin
8
cingulin coiled-coil
8
zo-1
5
evidence functional
4
functional interaction
4
interaction cingulin
4
cingulin zo-1
4

Similar Publications

Transfer of and increases 3D growth and invasiveness in recipient cancer cells.

Extracell Vesicles Circ Nucl Acids

July 2024

Laboratory of James G. Patton, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.

Aim: Extracellular communication via the transfer of vesicles and nanoparticles is now recognized to play an important role in tumor microenvironment interactions. Cancer cells upregulate and secrete abundant levels of and that can alter gene expression in donor and recipient cells. In this study, we sought to identify targets of and and conclusively demonstrate that microRNAs (miRNAs) can be functionally transferred from donor to recipient cells.

View Article and Find Full Text PDF

Synthesis and Characterization of Transferrin and Cell-Penetrating Peptide-Functionalized Liposomal Nanoparticles to Deliver Plasmid ApoE2 and in Mice.

Mol Pharm

January 2025

Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota 58108-6050, United States.

Alzheimer's disease (AD) is a prevalent neurodegenerative condition characterized by the aggregation of amyloid-β plaques and neurofibrillary tangles in the brain, leading to synaptic dysfunction and neuronal degeneration. Recently, new treatment approaches involving drugs such as donanemab and lecanemab have been introduced for AD. However, these drug regimens have been associated with adverse effects, leading to the exploration of gene therapy as a potential treatment option.

View Article and Find Full Text PDF

Cingulin (CGN) tethers nonmuscle myosin 2B (NM2B; heavy chain encoded by MYH10) to tight junctions (TJs) to modulate junctional and apical cortex mechanics. Here, we studied the role of the CGN-nonmuscle myosin 2 (NM2) interaction in epithelial morphogenesis and nanoscale organization of CGN by expressing wild-type and mutant CGN constructs in CGN-knockout Madin-Darby canine kidney (MDCK) epithelial cells. We show that the NM2-binding region of CGN is required to promote normal cyst morphogenesis of MDCK cells grown in three dimensions and to maintain the C-terminus of CGN in a distal position with respect to the ZO-2 (or TJP2)-containing TJ submembrane region, whereas the N-terminus of CGN is localized more proximal to the TJ membrane.

View Article and Find Full Text PDF

A human-specific cytotoxic neopeptide generated by the deafness gene Cingulin.

J Genet Genomics

November 2024

MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Jiangsu Key Laboratory of Molecular Medicine and National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, Jiangsu 210061, China; Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, Jiangsu 210061, China. Electronic address:

Accumulation of mutant proteins in cells can induce proteinopathies and cause functional damage to organs. Recently, the Cingulin (CGN) protein has been shown to maintain the morphology of cuticular plates of inner ear hair cells and a frameshift mutation in CGN causes autosomal dominant non-syndromic hearing loss. Here, we find that the mutant CGN proteins form insoluble aggregates which accumulate intracellularly and lead to cell death.

View Article and Find Full Text PDF

Extracellular communication via the transfer of vesicles and nanoparticles is now recognized to play an important role in tumor microenvironment interactions. Cancer cells upregulate and secrete abundant levels of and that can alter gene expression by both cell- and non-cell-autonomous mechanisms. We previously showed that these miRNAs activate Wnt signaling in colorectal cancer (CRC) through noncanonical pairing with 5 negative regulators of Wnt signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!