Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hypothesis: Supplemental oxygen can reduce intimal hyperplasia (IH) after stent deployment in a rabbit model.
Background: Endovascular stent placement is technically feasible, but long-term durability in vessels outside the aortoiliac system is compromised with postinterventional IH, which causes restenosis and failure of the arterial conduit.
Methods: Groups (n = 4 to 6) of female New Zealand white rabbits underwent placement of a 3-mm intraaortic stent with laparotomy and were placed in either normoxic (21% inspired oxygen concentration) or supplemental-oxygen (40% inspired oxygen concentration) environments for 0, 7, 14, and 28 days. The transarterial wall oxygen gradient was measured at 0, 7, and 28 days with an oxygen microelectrode. 5-Bromo-2'deoxyuridine (BrdU) was injected into the peritoneum before death to assess cellular proliferation. Aortic specimens were harvested en bloc and sectioned for analysis of cellular proliferation and intimal thickness.
Results: Intraaortic stent placement significantly decreased the transarterial wall oxygen gradient in the outer 70% of the vessel wall and was easily reversed at 7, 14, and 28 days with application of supplemental oxygen. Cellular proliferation was significantly decreased at 14 days (0.5% +/- 0.001% versus 2.3% +/- 0.002%; P <.001) and 28 days (0.4% +/- 0.001% versus 1.0% +/- 0.001%; P <.025) as measured with count of nuclei staining for 5-Bromo-2'deoxyuridine in the intima and media. Intimal thickness was significantly decreased at 28 days in oxygen-supplemented rabbits (intimal area/medial area = 0.50 +/- 0.07) as compared with controls (intimal area/medial area = 0.89 +/- 0.11; P <.025).
Conclusion: This study shows the ability of supplemental oxygen to reverse arterial wall hypoxia, decrease cellular proliferation, and control IH at the deployment site of an intraarterial stent in a rabbit model. Forty-percent supplemental oxygen suppresses IH by 44% at 28 days as compared with normoxic control values. Cellular proliferation is reduced four-fold at 14 days and two-fold at 28 days in oxygen-supplemented rabbits as compared with control media after deployment. The clinical implications of these findings are significant, especially as the role of endovascular interventions continues to expand.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1067/mva.2002.123090 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!