A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Control of the allosteric equilibrium of hemoglobin by cross-linking agents. | LitMetric

The kinetics of ligand rebinding have been studied for modified or cross-linked hemoglobins (Hbs). Several compounds were tested that interact with alpha Val 1 or involve a cross-link between alpha Val 1 and alpha Lys 99 of the opposite dimer. By varying the length of certain cross-linking molecules, a wide range in the allosteric equilibrium could be obtained. Several of the mono-aldehyde modified Hbs show a shift toward the high affinity conformation of Hb. At the other extreme, for certain di-aldehyde cross-linked Hbs, the CO kinetics are typical of binding to deoxy Hb, even at low photodissociation levels, with which the dominant photoproduct is the triply liganded species; in these cases the hemoglobin does not switch from the low to high affinity state until after the fourth ligand is bound. Although each modified Hb shows only two distinct rates, the kinetic data as a function of dissociation level cannot be simulated with a simple two-state model. A critical length is observed for the maximum shift toward the low affinity T-state. Longer or shorter lengths of the cross-linker yielded more high affinity R-state. Unlike native Hb, which is in equilibrium with free dimers, the cross-linked Hbs maintain the fraction slow kinetics, which is unique to Hb tetramers, even at 0.5 microM (total heme). Addition of HbCN to unmodified HbCO solutions results in dimer exchange, which decreases the relative fraction of slow bimolecular kinetics; the cross-linked Hbs did not show such an effect, indicating that they do not participate in dimer exchange.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2373633PMC
http://dx.doi.org/10.1110/ps.4880102DOI Listing

Publication Analysis

Top Keywords

high affinity
12
cross-linked hbs
12
allosteric equilibrium
8
alpha val
8
fraction slow
8
dimer exchange
8
hbs
5
control allosteric
4
equilibrium hemoglobin
4
hemoglobin cross-linking
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!