A simple and rapid method is described for determining the integrated T-DNA copy number and the genotype in transgenic Arabidopsis thaliana by two-step competitive PCR. First, the amount of genomic DNA in the extracts, obtained from an individual A. thaliana transformant, was accurately determined by the 1st competitive PCR using a known single copy gene, 4HPPD (4-hydroxyphenylpyruvate dioxygenase), as a target. Second, the number of T-DNA copies per genome was estimated by quantifying the NPTII gene, which was involved in the T-DNA, by the 2nd competitive PCR using exactly the same amount of genomic DNA for each sample. The estimated copy number and genotype obtained by this procedure were identical to those determined by Southern blot analysis and segregation analysis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

competitive pcr
16
copy number
12
number genotype
12
genotype transgenic
8
transgenic arabidopsis
8
arabidopsis thaliana
8
amount genomic
8
genomic dna
8
determination gene
4
copy
4

Similar Publications

Characterization of the ligand-binding properties of odorant-binding protein 38 from when interacting with soybean volatiles.

Front Physiol

January 2025

Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Innovation Center of Hebei Province, International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, China.

Background: (Fabricius) (Hemiptera: Alydidae) is a major soybean pest throughout East Asia that relies on its advanced olfactory system for the perception of plant-derived volatile compounds and aggregation pheromones for conspecific and host plant localization. Odorant binding proteins (OBPs) facilitate the transport of odorant compounds across the sensillum lymph within the insect olfactory system, enabling their interaction with odorant receptors (ORs).

Methods: Real-time quantitative PCR (qRT-PCR) analyses, fluorescence-based competitive binding assays, and molecular docking analyses were applied to assess the expression and ligand-binding properties of OBP38 from .

View Article and Find Full Text PDF

Three-dimensional genome architecture in intrahepatic cholangiocarcinoma.

Cell Oncol (Dordr)

January 2025

College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, 100029, China.

Purpose: Intrahepatic cholangiocarcinoma (ICC) is a common primary hepatic tumors with a 5-year survival rate of less than 20%. Therefore, it is crucial to elucidate the molecular mechanisms of ICC. Recently, the advance of high-throughput chromosome conformation capture (Hi-C) technology help us look insight into the three-dimensional (3D) genome structure variation during tumorigenesis.

View Article and Find Full Text PDF

Comparison of plastisphere microbiomes during the degradation of conventional and biodegradable mulching films.

J Hazard Mater

January 2025

Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. Electronic address:

Biodegradable mulch films (BDMs) are becoming increasingly popular in agriculture and are emerging as an alternative to conventional polyethylene (PE) films. However, the intricate details surrounding the establishment and growth of microorganisms on BDMs and PE during their degradation in agricultural fields remain unclear. In this study, the succession of bacterial communities in farmland soil and the plastispheres of PE and BDMs were compared through 16S rRNA gene high-throughput sequencing and real-time PCR.

View Article and Find Full Text PDF

The bioaugmentation performance is severely reduced in the treatment of high-saline pesticide wastewater because the growth and degradation activity of pesticide degraders are significantly inhibited by high salt concentrations. In this study, a heterologous biodegradation pathway comprising the seven genes mpd/pnpABCDEF responsible for the bioconversion of p-nitrophenol (PNP)-substituted organophosphorus pesticides (OPs) into β-oxoadipate and the genes encoding Vitreoscilla hemoglobin (VHb) and green fluorescent protein (GFP) were integrated into the genome of a salt-tolerant chassis Halomonas cupida J9, to generate a genetically engineered halotolerant degrader J9U-MP. RT-PCR assays demonstrated that the nine exogenous genes are successfully transcribed to mRNA in J9U-MP.

View Article and Find Full Text PDF

Concentration-Bias-Free Discrimination of Single Nucleotide Variants Using Isothermal Nucleic Acid Amplification and Mismatch-Guided DNA Assembly.

Anal Chem

January 2025

Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China.

Isothermal nucleic acid amplification techniques are promising alternatives to polymerase chain reaction (PCR) for amplifying and detecting nucleic acids under resource-limited conditions. While many isothermal amplification strategies, such as recombinase polymerase amplification (RPA), offer comparable sensitivity to PCR, they often lack the specificity and robustness for discriminating single nucleotide variants (SNVs), mainly due to the uncontrolled production of massive amplicons. Herein, we introduce a mismatch-guided DNA assembly (MGDA) approach capable of discriminating SNVs in the presence of high concentrations of wild-type (WT) interferences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!