Adiponectin, an adipocyte-derived hormone, was recently shown to have potential therapeutic applications in diabetes and obesity because of its influence on glucose and lipid metabolism. We found that brown fat in normal human bone marrow contains this protein and used marrow-derived preadipocyte lines and long-term cultures to explore potential roles in hematopoiesis. Recombinant adiponectin blocked fat cell formation in long-term bone marrow cultures and inhibited the differentiation of cloned stromal preadipocytes. Adiponectin also caused elevated expression of cyclooxygenase-2 (COX-2) by these stromal cells and induced release of prostaglandin E(2) (PGE(2)). The COX-2 inhibitor Dup-697 prevented the inhibitory action of adiponectin on preadipocyte differentiation, suggesting involvement of stromal cell-derived prostanoids. Furthermore, adiponectin failed to block fat cell generation when bone marrow cells were derived from B6,129S(Ptgs2tm1Jed) (COX-2(+/-)) mice. These observations show that preadipocytes represent direct targets for adiponectin action, establishing a paracrine negative feedback loop for fat regulation. They also link adiponectin to the COX-2-dependent PGs that are critical in this process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2447671PMC
http://dx.doi.org/10.1172/JCI14506DOI Listing

Publication Analysis

Top Keywords

bone marrow
16
fat cell
12
cell formation
8
marrow cultures
8
adiponectin
8
fat
5
paracrine regulation
4
regulation fat
4
bone
4
formation bone
4

Similar Publications

Assay for Transposase-Accessible Chromatin with sequencing (ATAC-seq) is a powerful, high-throughput technique for assessing chromatin accessibility and understanding epigenomic regulation. Neutrophils, as a crucial leukocyte type in immune responses, undergo substantial chromatin architectural changes during differentiation and activation, which significantly impact the gene expression necessary for their functions. ATAC-seq has been instrumental in uncovering key transcription factors in neutrophil maturation, revealing pathogen-specific epigenomic signatures, and identifying therapeutic targets for autoimmune diseases.

View Article and Find Full Text PDF

Macrophage infiltration and activation is a key factor in the progression of diabetic nephropathy (DN). However, aerobic glycolysis induced by m6A methylation modification plays a key role in M1-type activation of macrophages, but the specific mechanism remains unclear in DN. In this study, the expression of m6A demethylase Fto in bone marrow derived macrophages and primary kidney macrophages from db/db mice.

View Article and Find Full Text PDF

Multiple myeloma is a disease related to the proliferation of malignant plasma cells; in most patients, the disease is confined to the level of bone marrow. However, in a minority of patients, the malignant plasma cells are also localized outside the bone marrow, either at the level of peripheral blood (plasma cell leukemia) or at the level of soft tissues (extramedullary multiple myeloma). These two rare forms of aggressive MM (ultrahigh-risk (uHR) MM as MM leading to death within 24-36 months) are both associated with some molecular features and with a limited response to current treatments.

View Article and Find Full Text PDF

Background: Clonal mature B-cell lymphoproliferative disorders (B-LPDs) are a heterogeneous group of neoplasia characterized by the proliferation of mature B lymphocytes in the peripheral blood, bone marrow and/or lymphoid tissues. B-LPDs classification into different subtypes and their diagnosis is based on a multiparametric approach. However, accurate diagnosis may be challenging, especially in cases of ambiguous interpretation.

View Article and Find Full Text PDF

Background: Resistance to chemoimmunotherapy in patients with advanced non-small cell lung cancer (NSCLC) necessitates effective prognostic biomarkers. Although F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) has shown potential for efficacy assessment, it has been mainly evaluated in immuno-monotherapy setting, lacking elaborations in the scenarios of immunotherapy combined with chemotherapy. To tackle this dilemma, we aimed to build a non-invasive PET/CT-based model for stratifying tumor heterogeneity and predicting survival in advanced NSCLC patients undergoing chemoimmunotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!