Effect of beta-agkistrodotoxin (beta-AgTx), a presynaptic neurotoxin purified from snake venom, on large-conductance calcium-activated potassium channels (BK(Ca)) was studied in rat hippocampal CA1 pyramidal neurons using inside-out configuration of patch-clamp technique. The results showed that in equimolar K+ (150 mM) and 1 microM intracellular Ca2+ conditions, internal application of beta-AgTx inhibited the activity of BK(Ca) by reducing open probability (P(o)) of the channels in a concentration-dependent manner. High concentration (74 nM) of beta-AgTx completely eliminated opening of the channels. However, 37 nM beta-AgTx (at -40 mV) decreased P(o) from 0.49+/-0.07 to 0.03+/-0.03, switched two open time constants (0.51+/-0.32 and 8.77+/-1.63 ms) to be a single time constant of 0.46+/-0.40 ms. The results indicate that inhibition of BK(Ca) by beta-AgTx may account for the facilitatory phase of the toxin on acetylcholine release from nerve terminals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-8993(02)02560-x | DOI Listing |
Cells
December 2024
Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
Podocytes express large-conductance Ca-activated K channels (BK channels) and at least two different pore-forming KCa1.1 subunit C-terminal splice variants, known as VEDEC and EMVYR, along with auxiliary β and γ subunits. Podocyte KCa1.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile.
BK channels can control neuronal function, but their functional relevance in activity-dependent changes of synaptic function remains elusive. Here, we report that repetitive low-frequency stimulation activates BK channels through 12(S)HPETE, an arachidonic acid metabolite, produced downstream of postsynaptic metabotropic glutamate receptors (mGluRs) to trigger long-term depression (LTD) at CA3-CA1 synapses in hippocampal slices from P7-P10 mice. Activation of BK channels is subunit specific, as paxilline but not iberiotoxin blocked mGluR-LTD.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA.
Extracellular vesicles (EVs) are associated with intercellular communications, immune responses, viral pathogenicity, cardiovascular diseases, neurological disorders, and cancer progression. EVs deliver proteins, metabolites, and nucleic acids into recipient cells to effectively alter their physiological and biological response. During their transportation from the donor to the recipient cell EVs face differential ionic concentrations, which can be detrimental to their integrity and impact their cargo content.
View Article and Find Full Text PDFBehav Brain Funct
December 2024
Department of Pharmacology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
The large-conductance calcium- and voltage-activated potassium (BK) channels, encoded by the KCNMA1 gene, play important roles in neuronal function. Mutations in KCNMA1 have been found in patients with various neurodevelopmental features, including intellectual disability, autism spectrum disorder (ASD), or attention deficit hyperactivity disorder (ADHD). Previous studies of KCNMA1 knockout mice have suggested altered activity patterns and behavioral flexibility, but it remained unclear whether these changes primarily affect immediate behavioral adaptation or longer-term learning processes.
View Article and Find Full Text PDFNeuropharmacology
March 2025
Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38103, USA. Electronic address:
Acute intoxication by toluene usually follows intentional inhalation to achieve a "high", which may lead to repeated use due to toluene's reinforcing properties. In both acute and chronic intoxication brain function is primarily affected. Neuronal and glial elements participate in toluene's reinforcing properties and chronic toxicity, yet the targets underlying acute toxicity remain unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!