By monitoring changes in the cytosolic [Ca2+](i) and rates of juvenile hormone (JH) synthesis in response to L-glutamate agonists and antagonists, we identified and characterized glutamate receptor subtypes in corpus allatum (CA) cells of the cockroach, Diploptera punctata. During the first ovarian cycle, corpora allata exhibited a cycle of changes in sensitivity to L-glutamate correlated to cyclic changes in rates of JH synthesis. When exposed to 60 microM L-glutamate in vitro, the active corpora allata of day-4 mated females produced 60% more JH, while inactive corpora allata at other ages showed 10-20% stimulatory response. Pharmacological characterization using various L-glutamate receptor agonists and antagonists indicated that several ionotropic subtypes of L-glutamate receptors were present in the CA. The CA showed an increase in rates of JH synthesis in response to NMDA, kainate, and quisqualate, but not to AMPA in both L-15 medium and minimum incubation medium. In contrast, applications of the metabotropic receptor-specific agonist trans-ACPD failed to elicit a change in the cytosolic [Ca2+](i) and JH production. An elevation of cytosolic calcium concentration, followed by 20-30% rise in JH production, was observed when active CA cells were exposed to 10-40 microM kainate. Kainate had no stimulatory effect on JH synthesis in calcium-free medium. The kainate-induced JH synthesis was blocked by 20 microM CNQX but was not affected by 20 microM NBQX. Kainate-stimulated JH production was not suppressed by MK-801 (a specific blocker of NMDA-receptor channel), nor was NMDA-stimulated JH production affected by CNQX (a specific antagonist of kainate receptor). These data suggest that active CA cells are stimulated to synthesize more JH by a glutamate-induced calcium rise via NMDA-, kainate- and/or quisqualate-sensitive subtypes of ionotropic L-glutamate receptors. The metabotropic-subtype and ionotropic AMPA-subtype L-glutamate receptors are unlikely to be present on active CA cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0965-1748(01)00146-1 | DOI Listing |
Insect Biochem Mol Biol
December 2024
Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France. Electronic address:
In animals, sexual maturation coincides with the development of sexual behaviors and reproductive system. These developmental events are influenced by diet and governed by endocrine signals. Here, for the first time in insects, we explored functional links between nutrition and juvenile hormone (JH) in the male reproductive physiology through the insulin signaling pathway (ISP) acting as a transducer of nutritional signals.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI 02912.
Dietary restriction (DR) slows aging in many animals, while in some cases, the sensory signals from diet alone are sufficient to retard or accelerate lifespan. The digestive tract is a candidate location to sense nutrients, where neuropeptides secreted by enteroendocrine cells (EEC) produce systemic signals in response to food. Here, we measure how neuropeptide F (NPF) is secreted into adult circulation by EEC and find that specific EEC differentially respond to dietary sugar and yeast.
View Article and Find Full Text PDFPNAS Nexus
October 2024
Department of Agricultural and Environmental Biology, Laboratory of Applied Entomology, The University of Tokyo, Tokyo 113-8657, Japan.
In holometabolous insects, proper control of the production of juvenile hormone (JH), which maintains larval traits, is crucial for successful metamorphosis. JH is produced specifically in the corpora allata (CA) via the functioning of a set of JH biosynthetic enzymes (JHBEs). Expression of JHBE genes in the CA is coordinated except for JH acid methyltransferase (), which functions in the last step of JH biosynthesis.
View Article and Find Full Text PDFInsect Sci
October 2024
Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China.
Juvenile hormones (JHs) play a crucial role in regulating development and reproduction in insects. Most insects predominantly synthesize JH III, which typically involves esterification followed by epoxidation, lepidopteran insects use a pathway of epoxidation followed by esterification. Although hemipteran insects have JH III and JH skipped bisepoxide III (JH SB3), the synthesis pathway and key epoxidases remain unclear.
View Article and Find Full Text PDFInsect Sci
September 2024
State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province, China.
In addition to preventing precocious larval metamorphosis, juvenile hormone (JH), synthesized in corpora allata (CA), is known to stimulate female reproduction of insects. JH titer is extremely low or absent during metamorphosis, but thereafter rapidly increases in the previtellogenic stage and rises to a peak in the vitellogenic phase. However, the mechanisms underlying the biosynthesis of high levels of JH in adults remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!