The cystic fibrosis transmembrane conductance regulator (CFTR) contains two nucleotide-binding domains (NBDs) or ATP-binding cassettes (ABCs) that characterize a large family of membrane transporters. Although the three-dimensional structures of these domains from several ABC proteins have been determined, this is not the case for CFTR, and hence the domains are defined simply on the basis of sequence alignment. The functional C-terminal boundary of NBD1 of CFTR was located by analysis of chloride channel function [Chan, Csanady, Seto-Young, Nairn and Gadsby (2000) J. Gen. Physiol. 116, 163-180]. However, the boundary between the C-terminal end of NBD2 and sequences further downstream in the whole protein, that are important for its cellular localization and endocytotic turnover, has not been defined. We have now done this by assaying the influence of progressive C-terminal truncations on photolabelling of NBD2 by 8-azido-ATP, which reflects hydrolysis, as well as binding, at that domain, and on NBD2-dependent channel gating itself. The boundary defined in this way is between residues 1420 and 1424, which corresponds to the final beta-strand in aligned NBDs whose structures have been determined. Utilization of this information should facilitate the generation of monodisperse NBD2 polypeptides for structural analysis, which until now has not been possible. The established boundary includes within NBD2 a hydrophobic patch of four residues (1413-1416) previously shown to be essential for CFTR maturation and stability [Gentzsch and Riordan (2001) J. Biol. Chem. 276, 1291-1298]. This hydrophobic cluster is conserved in most ABC proteins, and on alignment with ones of known structure constitutes the penultimate beta-strand of the domain which is likely to participate in essential structure-stabilizing beta-sheet formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1222794PMC
http://dx.doi.org/10.1042/BJ20020511DOI Listing

Publication Analysis

Top Keywords

c-terminal boundary
8
binding domain
8
cystic fibrosis
8
fibrosis transmembrane
8
transmembrane conductance
8
conductance regulator
8
abc proteins
8
boundary
5
functional analysis
4
c-terminal
4

Similar Publications

In Drosophila, a group of zinc finger architectural proteins recruits the CP190 protein to the chromatin, an interaction that is essential for the functional activity of promoters and insulators. In this study, we describe a new architectural C2H2 protein called Madf and Zinc-Finger Protein 1 (Mzfp1) that interacts with CP190. Mzfp1 has an unusual structure that includes six C2H2 domains organized in a C-terminal cluster and two tandem MADF domains.

View Article and Find Full Text PDF

G-protein coupled receptors (GPCRs) are the largest class of membrane proteins encoded in the human genome with high pharmaceutical relevance and implications to human health. These receptors share a prevalent architecture of seven transmembrane helices followed by an intracellular, amphipathic helix 8 (H8) and a disordered C-terminal tail (Ctail). Technological advancements have led to over 1000 receptor structures in the last two decades, yet frequently H8 and the Ctail are conformationally heterogeneous or altogether absent.

View Article and Find Full Text PDF

function, assembly, and interaction of primary cell wall cellulose synthase homotrimers.

bioRxiv

February 2024

Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903. Howard Hughes Medical Institute.

Plant cell walls contain a meshwork of cellulose fibers embedded into a matrix of other carbohydrate and non-carbohydrate-based biopolymers. This composite material exhibits extraordinary properties, from stretchable and pliable cell boundaries to solid protective shells. Cellulose, a linear glucose polymer, is synthesized and secreted across the plasma membrane by cellulose synthase (CesA).

View Article and Find Full Text PDF

Backbone NMR resonance assignments for the C terminal domain of the Streptococcus mutans adhesin P1.

Biomol NMR Assign

December 2023

Department of Biochemistry and Molecular Biology and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610-0245, USA.

Adhesin P1 (aka AgI/II) plays a pivotal role in mediating Streptococcus mutans attachment in the oral cavity, as well as in regulating biofilm development and maturation. P1's naturally occurring truncation product, Antigen II (AgII), adopts both soluble, monomeric and insoluble, amyloidogenic forms within the bacterial life cycle. Monomers are involved in important quaternary interactions that promote cell adhesion and the functional amyloid form promotes detachment of mature biofilms.

View Article and Find Full Text PDF

Dynamin 1xA interacts with Endophilin A1 via its spliced long C-terminus for ultrafast endocytosis.

bioRxiv

September 2023

Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Locked Bag 23, Wentworthville 2145, NSW, Australia.

Dynamin 1 (Dyn1) has two major splice variants, xA and xB, with unique C-terminal extensions of 20 and 7 amino acids, respectively. Of these, only Dyn1xA is enriched at endocytic zones and accelerates vesicle fission during ultrafast endocytosis. Here, we report that the long tail variant, Dyn1xA, achieves this localization by preferentially binding to Endophilin A through a newly defined Class II binding site overlapping with its extension, at a site spanning the splice boundary.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!